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Blob theory has been widely applied to describe polymer conformations and dynamics in nanoconfine-

ment. In slit confinement, blob theory predicts a scaling exponent of 2=3 for polymer diffusivity as a

function of slit height, yet a large body of experimental studies using DNA produce a scaling exponent

significantly less than 2=3. In this work, we develop a theory that predicts that this discrepancy occurs

because the segment correlation function for a semiflexible chain such as DNA does not follow the Flory

exponent for length scales smaller than the persistence length. We show that these short length scale effects

contribute significantly to the scaling for the DNA diffusivity, but do not appreciably affect the scalings for

static properties. Our theory is fully supported by Monte Carlo simulations, quantitative agreement with

DNA experiments, and the results reconcile this outstanding problem for confined polymers.
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The conformation and dynamics of single DNA
molecules in confinement have been extensively studied,
facilitated by nanofabrication techniques capable of manu-
facturing devices with well-defined canonical geometries
and direct visualization of single DNA via fluorescence
microscopy. Practically, the understanding of DNA physics
in confinement is vital for the development of nanodevices
for genome analysis [1–4]. Moreover, simulations and
experiments of DNA in confinement have been used to
critically examine classic and long-existing theories in
polymer physics.

Proposed by de Gennes [5], blob theory has been applied
to predict the static and dynamic scaling behavior of single
polymers when varying the confining dimension, e.g., the
nanochannel diameter [6,7] or the nanoslit height [8–11]. In
slitlike confinement (two parallel plates), blob theory pre-
dicts a scaling of DNA extension with respect to the slit

height of Rk �H1=4, which agrees with experiments [9,10]

and simulations [11]. Despite the success of blob theory in
predicting scalings for static properties, significant discrep-
ancies exist between blob theory and the results of experi-
ments and simulations for dynamic scalings: blob theory

yields a scaling for diffusivity versus slit height of D�
H2=3, which is substantially larger than the scaling exponent
seen in experiments [8,10,12–14] and simulations [15].

In this work, we reconcile the predictions of blob theory
and experimental data by developing a modified theory
that approximately accounts for the pair correlation of
DNA segments at length scales smaller than the persistence
length. While pair correlations below the persistence
length have little effect on static scalings, they dramatically
affect the diffusivity. By accounting for the difference
between the DNA pair correlations below the persistence

length, we obtain the excellent agreement between theory
and experiment seen in Fig. 1.
Let us first recall the classic blob theory arguments for

the scaling of DNA diffusivity in slits for the de Gennes
regime (Lp � H � Rg;bulk, with persistence length Lp

and DNA bulk radius of gyration Rg;bulk). Within the slit,

DNA is represented by a series of self-avoiding blobs, each
with diameter equal to the height H. Using Flory scaling
[16], the contour length within a blob is

Lblob �H5=3L�1=3
p w�1=3; (1)

where w is the effective chain width. Here, we use a simple
Flory exponent of 3=5. (The precise value [17] is 0:5877�
0:0006.) The number of blobs is Nblob ¼ L=Lblob, where L
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FIG. 1 (color online). Diffusivity as a function of slit height.
The symbols are from previous experiments [8] for both �-DNA
and 1=2 �-DNA. The two lines are calculated from Eq. (9) using
the prefactor c2 ¼ 1:68. The triangle indicates the de Gennes
scaling of 2=3.
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is the contour length. In the Zimm model [18], the
polymer in each blob is hydrodynamically coupled to its
entrained solvent, resulting in a drag force on each blob
proportional to H. The resulting scaling of diffusivity is

D� 1=ðNblobHÞ �H2=3L�1=3
p w�1=3L�1.

To understand why the classic blob theory does not
capture experimental data, we need to consider a more
detailed approach which accounts for correlations at the
persistence length scale. The DNA diffusivity in slits is
determined by hydrodynamic interaction between DNA
segments. Here, hydrodynamic interaction refers to the
force exerted on a particle due to the flow induced by the
movement of another particle. The diffusivity in slits is
approximated [19] as

D ¼ kBT

L

Z H=2

0
hðrÞ�ðrÞdr; (2)

where kBT is the thermal energy, �ðrÞ ¼ 1=ð6�r�Þ is the
angle-preaveraged Oseen tensor in free solution, � is the
viscosity of the solvent, and hðrÞ � 4�r2LpgðrÞ is a

dimensionless form of the pair correlation function gðrÞ.
Based on Eq. (1), the dimensionless pair correlation used in
the classic blob theory is

hðrÞ ¼ c1r
2=3L�1=3

p w�1=3; (3)

where c1 is a prefactor. After substituting this expression
into Eq. (2), the resulting diffusivity is

D1 ¼ c2H
2=3L�1=3

p w�1=3D0; (4)

where

D0 ¼ kBT=ð6��LÞ (5)

is the Rouse diffusivity and c2 is a prefactor that corrects
for the approximation of a free-solution Oseen tensor in
Eq. (2). Note that applying the precise Flory exponent of
0.5877 yields the scaling D1 �H0:7015.

As expected, this calculation reproduces the result cited
by many authors [8,10,12]. However, it fails to explain
the experimental data because the Flory pair correlation
function is used throughout the entire domain in the inte-
gral of Eq. (2). DNA behaves like a stiff rod below the
persistence length, so we propose modifying the pair
correlation with the approximate form:

hðrÞ ¼
8<
:
2 r < Lp=2

c1r
2=3L�1=3

p w�1=3 r � Lp=2:
(6)

This modified pair correlation function minimally
affects the static properties of DNA in slits, such as the
scaling of DNA extension. Using blob theory and Eq. (1),

the in-plane DNA extension is determined as Rjj �
HN3=4

blob ¼ HðL=LblobÞ3=4 �H�1=4. If the modified hðrÞ is
considered, the calculation of Lblob is broken up into two
integrals:

Lblob ¼
Z Lp=2

0
hðrÞdrþ

Z H=2

Lp=2
hðrÞdr: (7)

Substituting Eq. (6), the above equation becomes

Lblob¼
8><
>:
H H<Lp

c1
3
5

��
H
2

�
5=3�

�
Lp

2

�
5=3

�
ðLpwÞ�1=3þLp H�Lp:

(8)

For the de Gennes regime, whereH is always at least a few
times Lp, this modification usually causes only a few

percent change in Lblob. As a result, the scaling exponent
of Rjj versusH will be very close to the value 1=4 predicted
by classic blob theory [10,11].
To confirm this conjecture, we used Monte Carlo simu-

lations for DNA in slits [11]. In the simulation, DNA is
modeled as a chain of Nb beads connected by (Nb � 1)
inextensible bonds of length lB, corresponding to a contour
length L ¼ ðNb � 1ÞlB. Three types of interactions are
considered: hard-core repulsions between DNA beads,
hard-core repulsions between DNA beads and slit walls,
and bending energies between adjacent bonds. The hard-
core diameter of the bead w is set to equal the bond length
lB. The bending rigidity is set to reproduce the persistence
length Lp of 50 nm. The chain width is 5 nm and the

contour length is 8 �m (Nb ¼ 1601 beads). The simula-
tion starts from a random conformation. In each Monte
Carlo cycle, we perform either one crankshaft move or one
reptation move (randomly picking the type of move). Each
chain is allowed to equilibrate for 108 steps. After equili-
bration, we perform more than 109 steps, recording one
configuration every 106 steps for data analysis.
We used the simulation data to estimate the contour

length Lblob inside a spherical blob whose diameter equals
the slit height. Note that the slit heights H in all figures are
always the effective slit height, i.e., the real slit heightHreal

minus the chain width w, because this effective slit height
is consistent with the slit height used in theoretical pre-
dictions. Recall that Lblob corresponds to the integral of
hðrÞ. For each bead in a given DNA configuration, we
counted how many beads are located within the distance
of H=2. Then, we multiply this number with the bond
length to obtain Lblob. Figure 2 shows Lblob as a function
of slit height. The simulation results with Lp ¼ 50 nm are

compared to Eq. (8) using a fit value of c1 ¼ 2:8. We note
that although a simple piecewise function is used in Eq. (8),
good agreement is obtained all through the Odijk and
de Gennes regimes. There are minor discrepancies when
H � Lp, where DNA behaves as neither a stiff rod nor a

long chain. The modification of hðrÞ leads to only a few
percent change of Lblob when H > 2Lp ¼ 100 nm. As a

result, considering the subpersistence behavior of hðrÞ has
a negligible effect on Lblob as well as the scaling of DNA
extension when slit height is a few times the persistence
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length. Indeed, the best power-law fit to the in-plane exten-
sion in the de Gennes regime [11] yields an exponent of
�0:249� 0:010, as shown in the inset of Fig. 2 (also see
Supplemental Material [20]). This exponent is very close
to �1=4 predicted by the classic blob theory.

While the modified pair correlation function in Eq. (6) has
minimal impact on the scaling for the size of the confined
chain, it has a much stronger impact on the diffusivity
because �ðrÞ � r�1 in Eq. (2), which dramatically enhan-
ces the importance of the short-scale property of hðrÞ.
Substituting Eq. (6) into Eq. (2), the diffusivity becomes

D ¼ D1 þD2 �D3; (9)

where

D2 � 2 lnðLp=aÞD0; (10)

D3 ¼ c2ðLp=wÞ1=3D0: (11)

The termsD2 and (D1 �D3) correspond to the integral over
the intervals ½0; Lp=2� and [Lp=2, H=2] in Eq. (2), respec-

tively. In Eq. (10), a is the hydrodynamic radius of the chain.
In computing D2, we regularized the integral to remove the
singularity (see Supplemental Material [20]). Equation (10)
approximately corresponds to the diffusivity of a randomly
oriented rod with the length Lp and the radius a [21–23].

Owing to the sharp crossover between forms of hðrÞ in
Eq. (6), it would be inappropriate to regard c2 as a universal
prefactor. Rather, we would expect that c2 will have a slight
dependence on the ratio Lp=w that arises from the details

of the crossover from rodlike correlations to real chain
correlations over the length scale of the slit.

Our results so far already start to explain the deviation
between experiments and classic blob theory. Equation (9)
differs from Eq. (4) by two additional terms, D2 and �D3.
Note that (D2 �D3) is positive and independent of H;
i.e., the scaling exponent is zero. Themixture of two scaling

exponents, D1 �H2=3 and ðD2 �D3Þ �H0, results in an
apparent exponent less than 2=3. This finding qualitatively
agrees with experimental results [8,10,12–14].
To obtain the quantitative results seen in Fig. 1, we need

to provide values for the hydrodynamic radius a appearing
in Eq. (10) and the prefactor c2 appearing in Eqs. (4) and
(11). We first set a ¼ 1:25 nm, which was determined
from sedimentation data by Yamakawa and Fujii [22]. To
obtain c2, we fit the prediction of our theory to the diffusion
coefficient obtained from Monte Carlo sampling of

Dsim ¼ kBT

N2
b

XNb

i;j

�
�ij

6��asim
Iþ�slitðrijÞ

�
; (12)

following the approach used in previous work [19,24]. The
first term is the Stokes friction on each bead, which
includes a parameter asim. Since the simulation model is
discrete, the hydrodynamic radius used in the simulations
should differ from the one used in a continuous model
(see Supplemental Material [20]). For the touching bead
model we used here, the value asim ¼ 1:38 nm leads to
simulated DNA diffusivities in free solution that match
experimental data over a large range of DNA lengths
[19,25]. The second term is the sum of the hydrodynamic
interactions between beads in the presence of slit walls,
which is calculated from the analytic solution of the
Stokeslet in slits [26] (see Supplemental Material [20]).
The normalized (dimensionless) diffusivities calculated

from simulations are shown in Fig. 3. The best power-law
fit to the simulation data points in the region 2Lp <H <

Rg;bulk (blue filled circles) yields an apparent scaling expo-

nent of 0.523. This exponent is close to most experiments
[8,10,12], but less than the value 2=3 predicted by classic
blob theory (dashed black line). The solid (red) line is
calculated from Eq. (9) using the best fit to the filled
(blue) circles, giving a value of the prefactor c2 ¼ 1:68,
in very good agreement with the simulations.
Our theory is only valid for the de Gennes regime. In

thin slits with H < Lp, the angled averaged free-solution

Oseen tensor is no longer a good approximation in Eq. (2)
as hydrodynamics will become partially screened near the
channel boundaries. Furthermore, in thin slits, chain seg-
ments tend to align with slit walls, and this alignment also
affects hydrodynamic interactions. As H increases, Eq. (9)
approaches the diffusivity scaling of classic blob theory,
indicating a vanishing contribution of subpersistence
length conformations to overall diffusivity for large slit
heights. The simulation data for our 8 �m chain, naturally,
follow neither our modified theory nor blob theory after
the slit height passes 1 �m in size because the chain
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FIG. 2. The contour length inside a blob as a function of slit
height. The solid line is calculated from Eq. (8) using Lp¼50nm,

w ¼ 5 nm, and a fit value c1 ¼ 2:8. The dashed line is the result
from classic blob theory, Eq. (1). The statistical errors are less
than the symbol sizes. The inset plot shows the normalized in-
plane radius of gyration as a function of slit height in simulations.
The triangle indicates the de Gennes scaling of �0:25.
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diffusivity is transitioning to its bulk value. Also, note that
the diffusivity is normalized with the Rouse diffusion
coefficient, so the dimensionless diffusivity in an infinitely
wide slit is not unity.

We are now in a position to compare our theoretical
predictions with experimental results by Balducci et al.
[8], as shown in Fig. 1. The parameters used for the theo-
retical predictions follow the experimental condition: T ¼
22:5 	C, � ¼ 1:1 cp, and L ¼ 22 �m (YOYO-labeled
�-DNA) or L ¼ 11 �m (YOYO-labeled 1=2 �-DNA).
Note that the DNA contour length is increased 38% by
YOYO labeling at a ratio of 1 dye=4 base pairs [27–30].
We set the effective chain width to w ¼ 5 nm, which is
estimated by Balducci et al. [8]. The persistence length is
set to 50 nm [27,31]. Using these parameters, Eq. (9) agrees
with the experimental results in moderate confinement in
Fig. 1 with no adjustment of the the prefactor c2 ¼ 1:68,
which was obtained from the independent comparison to
simulations.

Classic blob theory only gives the asymptotic behavior
for the diffusivity scaling, as demonstrated by the dashed
and solid lines in Fig. 3. We will now estimate at what slit
height and contour length the scaling of diffusivity
becomes sufficiently close to the de Gennes scaling of
2=3. We define the apparent scaling exponent as the slope
of theD-H curve in the log-log plot. The relative deviation
of the slope from the de Gennes scaling � � ð2=3�
slopeÞ=ð2=3Þ can be determined from Eq. (9). For a given
value of �, the corresponding slit height is the solution of
D1 ¼ ð1� �ÞD forH. Picking a 5% error, � ¼ 0:05, yields
H ¼ 4:3 �m. Using Eq. (8), the value of Lblob is approxi-
mately 100 �m. If we assume that the application of blob
theory requires at least five blobs, then the minimum

contour length of DNA is about 500 �m (�1100 kbp)
to observe an exponent close to the de Gennes scaling for
diffusivity. This value is 1 order of magnitude greater than
the contour length of DNA used in previous experiments
[8,10,12–14]. As a result, interpretation of DNA dynamics
in microfluidic and nanofluidic devices nearly always
requires modification of classic blob theory.
In addition to resolving the long-standing mystery

regarding observed scalings of DNA diffusivity in confine-
ment, this work deepens our fundamental understanding of
statics and dynamics of confined semiflexible chains. The
scaling behaviors in confinement have been traditionally
interpreted using the de Gennes blob theory. It is very
intriguing that this classic theory works well for statics
(thermodynamics) but not for dynamics (hydrodynamics).
Our analysis gives a straightforward explanation related to
a correction to the pair correlation at short length scales.
Dynamics are sensitive to short length scale chain statistics
due to the 1=ðdistanceÞ scaling of the hydrodynamic inter-
action tensor which weights the interactions. However,
statics lack this nonlinear weighting and hence are more
forgiving to slight modifications of short length scale pair
correlations. Looking forward, we expect that similar
arguments may be applied to resolve the difference
in diffusivity scaling exponents between blob theory
(� ¼ 2=3) and simulation [19,24,32] (� < 2=3) in
square-channel (‘‘tubes’’) confinement. Furthermore, other
dynamical properties, e.g., the relaxation time, are also
expected to deviate from the classic blob theory.
In conclusion, we find that the classic blob theory should

be modified to include the short-scale pair correlation
when applied to the dynamics of semiflexible polymers
in confinement. Via modification of the subpersistence pair
correlation, we have reconciled DNA experiments and
simulation results with blob theory of polymers in slitlike
confinement. This modification is necessary to interpret
confined semiflexible polymer dynamics.
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