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ABSTRACT: The similarities and differences between geo-
metric and tensile constraints on polymers have not been fully
investigated. Here we use theory (blob models) and
simulations to present a comprehensive comparison between
polymers in these two situations. For a polymer in good
solvent, the effect of tensile force f on extension in the Pincus
regime is similar to the effect of cylindrical confinement in the
de Gennes regime after mapping the characteristic length kBT/
f to the cylindrical diameter D, where kBT is the thermal
energy. However, the comparison of the effects of tension and confinement on extension is lacking when kBT/f and D are less
than the thermal blob size b, referred to as extended Pincus regime and extended de Gennes regime, respectively. In the extended
Pincus regime, force can still segregate the ideal-coils with the size of ∼kBT/f, resulting in the scaling of extension L∥ ∼ (kBT/f)

−1.
In the extended de Gennes regime, excluded volume interaction is not sufficient to segregate the ideal-coils with the size of D,
resulting in the scaling L∥ ∼ D−2/3 different from the scaling in the extended Pincus regime. In addition to the scaling of
extension, the scaling of fluctuation in extension σ is also compared in the extended Pincus or extended de Gennes regime. It is
found that σ is independent of f and D, which reflects the ideal-chain behavior. All of the above scaling relations are validated by
Monte Carlo simulations. Simulation and scaling results are also used to determine the experimental conditions needed to access
the extended de Gennes and de Gennes regimes in various single molecule experiments.

1. INTRODUCTION
Advances in single-molecule techniques have made it possible
to study single polymers in geometric confinement1−5 and
under stretching force using optical/magnetic tweezers.6−8 The
responses of polymers to confinement or force provide insight
into their material properties and conformation, such as the
contour length,7 the persistence length,9,10 the interaction
strength between monomers,11,12 and the topological
states.13−16 Experimental results of polymers in confinement
or under force have been used to examine polymer scaling
theories17−22 and also have many practical applications. DNA
in micro-/nanofluidic devices have been applied to genome
mapping, which greatly facilitates the assembling process after
sequencing short fragments of DNA,23−27 and have been
applied to microfluidic separations.28,29 DNA tweezing provides
insights into the possible structural and conformational changes
of DNA induced by force generated in biological processes.6,30

Although confinement and force are different external
perturbations, their effects on polymer behavior share great
similarities from the viewpoint of scaling analysis31,32 when the
confinement is biaxial, such as the confinement in a cylinder or
tube.
In scaling analysis, cylindrical confinement induces a

characteristic length, the cylinder diameter D, to describe
polymer conformation. The competition of this characteristic
length D with other characteristic length scales, such as

unperturbed polymer size Rbulk and the Kuhn length Lk (twice
the persistence length), determines the polymer behaviors in
different regimes. In the de Gennes regime,31 a polymer can be
considered as a string of blobs with blob size D, as illustrated in
Figure 1a. These blobs are segregated by excluded volume
interactions. Within a blob, effects of confinement are absent,
and thus the subchains inside a blob behave as in free solution.
Combining the interblob and intrablob properties yields the
scaling of polymer extension L∥ ∼ D−2/3 in the de Gennes
regime.
Similar to cylindrical confinement, force applied to the end of

a polymer introduces a characteristic length ξ = kBT/f to
describe polymer conformations, where kBT is the thermal
energy and f is the stretching force. Under tension, a polymer
can be considered as a string of tensile blobs in the Pincus
regime,32 as illustrated in Figure 1b. In contrast to cylindrical
confinement, the driving force to segregate the blobs is not the
excluded volume interaction between blobs but the external
force. This stretching force aligns the tensile blobs because
back-folding on the length scale of ξ has an associated energy
cost ∼ kBT and is unlikely to occur. Inside a tensile blob, the
influence of external force is overwhelmed by thermal
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fluctuations, and thus the subchains inside a tensile blob behave
as in the absence of force. Similarly, the extension scales as L∥ ∼
ξ−2/3 ∼ f 2/3 in the Pincus regime.
To arrive at the scaling L∥ ∼ D2/3 and L∥ ∼ f 2/3 in the de

Gennes regime and the Pincus regime, Flory scaling34 is
assumed inside blobs, i.e. the blob size D or ξ scales as Lblob

3/5,
where Lblob is the contour length inside a blob. Flory scaling for
polymer in good solvent is valid only when the blob size is
larger than the thermal blob size b. Here, b is the critical coil
size where the excluded volume interaction equals kBT. The
subchain with a size smaller than b behaves as an ideal chain
rather than a real chain. As a result, Odijk pointed out that the
size of thermal blob b is also a characteristic length which
separates the polymer behavior between D < b and D > b or
between ξ < b and ξ > b.35

The unperturbed size Rbulk, thermal blob size b, and the Kuhn
length Lk correspond to three critical lengths that separate four
regimes when varying the cylindrical diameter or the stretching
force, as shown in Figure 1. For a polymer under applied force,
the scaling of extension in the four regimes has been described

by Netz36 and later summarized by McIntosh and co-workers.33

In the regime of Lk ≪ ξ ≪ b, the scaling L∥ ∼ ξ−1 ∼ f1 is
derived considering ideal-chain behavior inside blobs and has
been recently validated by the recent experiment of stretching
poly(ethylene glycol).37 The regime of Lk ≪ ξ≪ b is called the
ideal-coil regime by Dittmore et al.37 and is referred to as the
extended Pincus regime in the current study because we will
show it is analogous to the extended de Gennes regime for a
polymer in confinement.
For a polymer in confinement, the scaling behaviors in

regimes Lk ≪ D ≪ b and b ≪ D ≪ Rbulk have been studied
using the blob model.35,38 In the regime b ≪ D ≪ Rbulk, the
blob size equals D. However, in the regime Lk ≪ D ≪ b, if the
blob size is still assumed to equal D (as in the de Gennes
regime), blobs would interpenetrate because the excluded
volume interaction energy due to the overlapping of two blobs
is less than the thermal energy. This interpenetration violates
the assumption of nonoverlapping blobs. To continue using the
blob model in the regime Lk ≪ D ≪ b, Odijk introduced the
concept of an anisometric blob,35 which is defined with a
diameter of D and a length larger than D. Later, Wang et al.38

derived the scaling relations of free energy and extensions in the
regime Lk ≪ D ≪ b. Coincidently, the scaling of extension L∥
∼ D−2/3 the regime Lk ≪ D ≪ b is identical to that in the
regime b ≪ D ≪ Rbulk. The regime Lk ≪ D ≪ b was termed
the “extended de Gennes regime” by Wang et al.38

It is striking that the scaling of extension changes from L∥ ∼
f 2/3 in the Pincus regime to L∥ ∼ f1 in the extended Pincus
regime, while the scaling of extension remains as L∥ ∼ D−2/3 in
the de Gennes and extended de Gennes regimes. Consequently,
observing the scaling L∥ ∼ f1 in the experiments37 and
simulations39 demonstrates the existence of the extended
Pincus regime, while observing the scaling L∥ ∼ D−2/3 cannot
distinguish the extended de Gennes regime from the de Gennes
regime38 and cannot prove the existence of the extended de
Gennes regime. As a result, the existence of the extended de
Gennes regime has yet to be confirmed.1 Fortunately, scaling
analysis predicts that the fluctuation in extension changes from
σ ∼ D1/6 in the de Gennes regime to σ ∼ D0 in the extended de
Gennes regime.38 So the change in the scaling of fluctuation
can be used to prove the existence of the extended de Gennes
regime. To the best of our knowledge, there is no experiment
or simulation to analyze the scaling of fluctuation from the
regime Lk ≪ D ≪ b to the regime b ≪ D ≪ Rbulk.
In the current study, we simulate polymers in cylindrical

confinement and analyze the scaling of fluctuation to confirm
the existence of the extended de Gennes regime. In addition,
we also present comprehensive comparisons between polymers
under force and in confinement, because the similarity between
the extended Pincus regime and the extended de Gennes
regime has not yet been presented. Our comparison is limited
to the middle two regimes in Figure 1, because the simulation
model in the current study is coarse-grained on the length of Lk
and is not suitable to study the strong confinement or highly
stretched regime.

2. THEORY AND COMPUTER SIMULATION
2.1. de Gennes Regime and Pincus Regime. The blob

model is traditionally applied to study the scaling behaviors of
polymers in confinement or under stretching force, when the
confinement strength or the stretching force is within the de
Gennes or the Pincus regime. Here, we summarize the scaling
arguments using the blob model. We consider a polymer

Figure 1. Schematic illustration of various regimes for a polymer in
cylindrical confinement or under stretching force, where the latter is an
adaptation of the illustration by McIntosh et al.33 (a) Confinement−
extension curve in log−log plot. (b) Force−extension curve in log−log
plot. We use the characteristic length ξ = kBT/f instead of f for the
comparison with confinement-extension curve. The gray areas indicate
the transition between regimes. The red cycles denote the thermal
blobs, while the blue cycles or ellipses denote the de Gennes blobs or
Pincus blobs. The two zoomed-in boxes in the extended de Gennes
regime and the extended Pincus regimes indicate the anisometric blob
and isometric blob, respectively. The four regimes are separated by
three characteristic lengths, Dc, Dc*, Dc** or ξc, ξc*, ξc** corresponding
to the Kuhn length Lk, the thermal blob size b, and the unperturbed
size Rbulk.
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consisting of Nk Kuhn segments. Each Kuhn segment has a
length of Lk and an effective chain width of w. The contour
length is L = NkLk. The average extension is calculated as ⟨L∥⟩
= NblobRblob, where Rblob is the size of the blob, Nblob = L/Lblob is
the number of blobs, and Lblob is the contour length inside a
blob. Using the Flory scaling Rblob ≈ Lblob

3/5Lk
1/5w1/5 inside a

blob, we obtain. ⟨L∥⟩/L = Lk
1/3w1/3Rblob

−2/3 Considering that
the blob size is determined by D or kBT/f, we arrive at the
scaling

⟨ ⟩ ≈ −L L D L w/ k
2/3 1/3 1/3

(1)

or

⟨ ⟩ ≈ −L L k T f L w/ ( / ) kB
2/3 1/3 1/3

(2)

The blob model can be also applied to derive the scaling of
fluctuation in extension σ. The fluctuation in size of each blob is
independent, and so the total fluctuation is determined by σ2 =
Nblobσblob

2, where σblob is the fluctuation of a blob. Inside a blob,
the influence of confinement or applied force is negligible, and
we can use the formula of fluctuation for the unperturbed
polymer40 σblob ≈ Rblob. So the scaling of the fluctuation follows
σ2 = NblobRblob

2 and is written as

σ ≈ LD L wk
2 1/3 1/3 1/3

(3)

or

σ ≈ L k T f L w( / ) k
2

B
1/3 1/3 1/3

(4)

Alternatively, the scalings of extension and fluctuation of
polymers in confinement have been derived from the
renormalized free energy38,41

≈ +F
k T

L

LD L w
L L w

L Dk

k

B

2

1/3 1/3 1/3

2 2/3 2/3

7/3
(5)

The average extension is found by minimizing the free
energy. The fluctuation is related to the effective spring
constant by ksprσ

2 ≈ kBT, and the spring constant is determined
by kspr ≈ ∂

2F/∂L∥
2. The extension and fluctuation derived from

above free energy are in agreement with eqs 1−4.
For a polymer under tension, the fluctuation can also be

derived from the spring constant, which is determined by kspr =
∂f/∂L∥. Then, the scaling relationship for fluctuations is solely
determined by the force−extension relationship, as shown

previously by Underhill and Doyle.42 When the force−
extension scaling is L∥ ∼ fα, the fluctuation scales as σ2 ∼ fα−1.
Note that in deriving eqs 1−4, we used the classic Flory

exponent of ν = 3/5. If we apply a more precise value of Flory
exponent43 of ν = 0.5877 ± 0.0006, then eqs 1 and 3 become
⟨L∥⟩/L ≈ D1−1/vLk

2/v‑3w2−1/v = D−0.702Lk
0.403w0.298 and σ2 ≈

LD2−1/vLk
2/v‑3w2−1/v = D0.298Lk

0.403w0.298, respectively. The
exponents in eqs 2 and 4 are changed similarly.

2.2. Extended de Gennes Regime and Extended
Pincus Regime. The above scaling arguments for the Pincus
regime and the de Gennes regime rely on the Flory scaling
inside blob. When the characteristic length D or kBT/f is less
than the thermal blob size b but much larger than the Kuhn
length, the subchain behaves as ideal chain on length scales
smaller than D or kBT/f. Such regime is referred to as the
extended de Gennes regime or the extend Pincus regime
because the underlying physics of the blob model remain, albeit
with modifications. The size of a thermal blob is determined by
setting the excluded volume (EV) interaction equal to thermal
energy. Considering that the contour length inside thermal blob
is b2Lk

−1 and the EV interaction in the unit of kBT is (b2Lk
−1)2

w/b3, we attain the scaling of the thermal blob size38

≈b L w/k
2

(6)

In the case of a polymer under tension, we simply replace the
scaling Rblob ≈ Lblob

3/5Lk
1/5wk

1/5 by Rblob ≈ Lblob
1/2Lk

1/2. Then,
the scaling for the extension becomes

⟨ ⟩ ≈ −L L k T f L/ ( / ) kB
1

(7)

The fluctuation in extension can also be derived considering
Rblob ≈ Lblob

1/2Lk
1/2.

σ ≈ LLk
2

(8)

The above equation indicates that the fluctuation in extension
is independent of force and chain width in the extended Pincus
regime, which reflects the ideal-chain behavior in this regime.
In the case of a polymer in confinement, we cannot simply

replace the scaling of Rblob in the previous analysis. In the
extended de Gennes regime, it costs less than thermal energy to
overlap two subchains each with size D. Thus, we cannot define
the subchain with a size of D as a blob. If we continue to use
the blob model, we should define an anisometric blob with a
diameter of D and a length larger than D so that the excluded
volume interaction can segregate blobs.35,38 The length of this

Table 1. Summary of Scaling Relations of the Extension L∥ and the Fluctuation σ for a Polymer in Cylindrical Confinement and
under Stretching Forcea

cylindrical diameter extension fluctuation

de Gennes regime
≪ ≪L D

L
wk
k

2 ⟨ ⟩
≈

ν−⎛
⎝⎜

⎞
⎠⎟

L L

Lw
Dw
L

k

k
2

1 1/
σ ≈

ν−⎛
⎝⎜

⎞
⎠⎟LL

Dw
Lk k

2

2

2 1/

extended de Gennes regime
≪ ≪

L
w

D Rk
bulk

2 ⟨ ⟩
≈

ν−⎛
⎝⎜

⎞
⎠⎟

L L

Lw
Dw
L

k

k
2

1 1/ σ ≈ LLk
2

applied force extension fluctuation

Pincus regime
≪ ≪L

k T
f

L
wk
kB

2 ⟨ ⟩
≈

ν−⎛
⎝⎜

⎞
⎠⎟

L L

Lw
k T

f
w

L
k

k

B
2

1 1/
σ ≈

ν−⎛
⎝⎜

⎞
⎠⎟LL

k T
f

w
Lk k

2
B

2

2 1/

extended Pincus regime
≪ ≪

L
w

k T
f

Rk
bulk

2
B ⟨ ⟩

≈
L

L
fL

k T
1
3

k

B

σ ≈ LLk
2

aThe Flory exponent is classically quoted to be v = 3/5, but has a more precise value v = 0.5877 ± 0.0006.43
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anisometric blob is determined as Rblob′ ≈ D2/3Lk
2/3w−1/3. The

contour length inside the anisometric blob is Lblob′ ≈ (Rblob′ )2Lk
≈ D4/3Lk

1/3w−2/3 due to the ideal-chain behavior inside the
blob. The number of blobs becomes Nblob′ = L/Lblob′ . The
extension in the extended de Gennes regime follows ⟨L∥⟩ =
Nblob′ Rblob′ .

⟨ ⟩ ≈ −L L D L w/ k
2/3 1/3 1/3

(9)

The above equation is identical to eq 2 in the de Gennes
regime.
The fluctuation in the extended de Gennes regime is derived

using σ2 ≈ Nblob′ (Rblob′ )2.

σ ≈ LLk
2

(10)

In the extended de Gennes regime, the scalings of the extension
and the fluctuation have also been derived by Wang et al.38

from the renormalized free energy. A notable feature of this
analysis in the extended de Gennes regime is that the scaling of
fluctuation exhibits ideal-chain behavior whereas the scaling of
extension still exhibits the properties of a real-chain.
2.3. Monte Carlo Simulation. We perform Monte Carlo

simulations to study a polymer under stretching force and in
cylindrical confinement. To simulate as large systems as
possible, we model the polymer as a chain consisting of freely
jointed Kuhn segments, illustrated in Figure 2a. This model

choice is justified as we will not be studying the Odijk regime
where sub-Kuhn length behavior becomes critical. Other than
the external stretching force or confining geometry, the only
interaction energy in the simulation is hard-core repulsions
between two segments (rods).
Rod−rod overlaps are identified when three conditions are

satisfied, as illustrated by Figure 2b. First, the distance between
axes of two rods must be less than the chain width. Second, we
calculate the vector ⎯→v12 that is perpendicular to the rod axis ⎯→v1

and ⎯→v2. We determine the plane where ⎯→v1 and
⎯→v12 are lying, as

shown in Figure 2b. Both ends of the blue rod, A and B, must
be located on the different sides of the plane. Third, both ends
of the red rod, C and D, must be located on the different sides
of the plane where ⎯→v2 and

⎯→v12 are lying. For two infinitely long
rods, the first condition is enough to judge the overlap. The
second and third conditions are necessary for finite length rods.
This algorithm for the excluded volume interaction between
rods is fast, but is so at the expense of missing some rare
overlap situations (see Supporting Information).
In the case of a polymer under tension, we add an energetic

term Eforce = −f·⃗L⃗n2n, where L⃗n2n is the end-to-end vector. In the

case of a polymer in cylindrical confinement, we reject all
Monte Carlo moves that place any segment outside the
confining geometry.
In the simulations, the number of Kuhn segments is kept

constant at 1600. Setting the Kuhn length as the unit length
and kBT/Lk as the unit force, we vary the chain width and the
stretching force or the cylindrical diameter. Our simulations
start from a random configuration. In each Monte Carlo cycle,
we perform either a crankshaft move or a reptation move,
following our previous work.44 After 108 equilibrium steps, we
perform at least 109 steps in a production run. We run 30
simulations in parallel on 30 processors using different random
number generator seeds. We record one polymer configuration
for every 105 steps in each production run. For every
configuration, we calculate the extension. We note that we
calculate extension in slightly a different manner for confine-
ment and stretching. For confinement, the extension is taken to
be the maximum span in the direction of cylinder axis, which is
widely used in the previous studies38,45 and corresponds to the
experimental measurement of polymer extension in fluidic
channels using fluorescence microscopy.46 For applied force,
the extension is taken to be the end-to-end vector projected in
the direction of the applied force, which corresponds to
extension measured in stretching experiments using optical or
magnetic tweezers. The fluctuation is calculated as the standard
deviation of the extension. The self-correlation time of
extension is on the order of 107 steps for the simulation in
cylindrical confinement and on the order of 106 steps for the
simulation under tension, and thus we sample at least 103-fold
of correlation times for each simulation condition. The
estimated statistical error of extension is always much less
than the symbol size in all figures. The estimated statistical
error of fluctuation is comparable to or less than the symbol
size in all figures.
We employ the freely jointed chain model rather than the

touching bead model used in our previous studies13,44,45

because exploring the extended de Gennes regime or the
extended Pincus regime requires a large contour length L and a
small chain width w relative to the Kuhn length Lk. The number
of beads in the touching bead model is determined by L/w. If
we were to employ the touching bead model, the required
number of beads is on the order of 105, exceeding our
computational capabilities.

3. RESULTS AND DISCUSSIONS
3.1. Polymers in Cylindrical Confinement. First, we

analyze the extension and the fluctuation as a function of the
cylinder diameter using different chain widths, as shown in
Figure 3, parts a and b. We recall that the contour length is
1600Lk in every simulation. We normalize the cylindrical
diameter by the thermal blob size Lk

2/w so that the de Gennes
regime and the extended de Gennes regime are separated at the
same position Dw/Lk

2 ≈ 1 for all chain widths. The extension
and the fluctuation are normalized such that the curves for
different chain widths merge to a master curve in the de
Gennes regime Dw/Lk

2 ≈ 1 and the extended de Gennes
regime Dw/Lk

2 ≪ 1.
For all chain widths, we perform the simulations for the

cylindrical diameter within [4Lk, 0.7 Rbulk] so that the
extension-confinement curves follow a single-power law.
Here, Rbulk is the radius of gyration in bulk. The condition D
> 4Lk is to avoid the Odijk regime and also to eliminate the
error caused by the coarse-grained modeling of a smoothly

Figure 2. (a) Schematic illustration of the model for the polymer
chain. (b) Schematic illustration to show how rod−rod overlapping is
identified.
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bending chain. The condition D < 0.7Rbulk roughly corresponds
to the situation of ⟨L∥⟩/D > 6.
Figure 3a shows that the normalized extensions for different

chain widths collapse to a master curve from Dw/Lk
2 ≈ 10−1 to

10, covering the transition from the extended de Gennes
regime to the de Gennes regime. This master curve follows a
single power law with an exponent close to −2/3 predicted by
blob theory. The best power law fits to the data points yield the
exponent of −0.672 ± 0.002, −0.679 ± 0.004, −0.687 ± 0.004,
−0.698 ± 0.007, −0.702 ± 0.008, and −0.704 ± 0.009 for the
dimensionless chain widths of 0.025, 0.05, 0.1, 0.25, 0.4 and 0.5,
respectively. The absolute values of these exponents are slightly
greater than 2/3. Recall that the scaling L∥ ∼ D−2/3 makes use
of the Flory scaling of 3/5. If we use the precise scaling43 of
0.5877, the scaling becomes L∥ ∼ D−0.7015. As expected, analysis
of the extension-confinement curves does not allow one to
distinguish the extended de Gennes regime from the de Gennes
regime.
Next, we turn to the fluctuation in extension. The data in

Figure 3b are obtained from the same simulations as Figure 3a.
Different from the single-power law for the extension, the slope
of the curve for the fluctuation gradually changes with D. When
Dw/Lk

2 ≪ 1, i.e., the extended de Gennes regime, the
fluctuation is independent of D. When Dw/Lk

2 ≫ 1, i.e., the de
Gennes regime, the scaling agrees with the prediction σ2 ∼
D1/3. The best power law fit to the simulations of w/Lk = 0.5
(red squares) yields the exponent of 0.31 ± 0.01. The transition
from the extended de Gennes regime to de Gennes regime is
gradual and broad. The curves for different chain widths
collapse to a master for Dw/Lk

2 ≪ 1 and Dw/Lk
2 ≫ 1, but the

curves diverge at the transition regime.
Combining parts a and b of Figure 3 reveals that the

fluctuation is enhanced with the decreasing extension in
cylindrical confinement. In contrast, the fluctuation is propor-
tional to the extension in free solution.40 The decreasing
function for the fluctuation−extension relationship in confine-
ment is due to the competition of Nblob and Rblob. With the
increasing D, the number of blobs becomes less and each blob
becomes larger. The change in Nblob dominates the extension
Lblob = NblobRblob, while the change in the blob size dominates
the fluctuation σ2 ≈ NblobRblob

2.

For an infinitely long polymer, the window size for the
extended de Gennes regime depends on the relative chain
width w/Lk because the extended de Gennes regime
corresponds to D within [Dc, Dc*] and the window size in
the log−log plot is log(Dc*/Dc) ∼ (Lk/w). For a thick chain
with w close to Lk, the window size of extended de Gennes
regime is vanishing small, as shown by the red-square symbols
in Figure 3, part a and b. On the other hand, as w/Lk → 0, i.e.,
approaching the ideal chain, the extended de Gennes regime
becomes infinitely wide, and the de Gennes regime becomes
unreachable, as shown by the black-circle symbols in Figure 3,
parts a and b. Thus, tuning the value of w/Lk can change the
window sizes of the extended de Gennes regime and the de
Gennes regime.

3.2. Polymers under Applied Force. Parts c and d of
Figure 3 show the extensions and the fluctuations for the
stretching simulations using the same normalizations as parts a
and b of Figure 3 with D replaced by kBT/f. The dashed lines
indicate the predicted scalings for the extended Pincus regime
and the Pincus regimes regime. The strengths of stretching
force in the simulations are within [kBT/Rbulk, 0.4kBT/Lk] .
When f < kBT/Rbulk, the polymer starts to enter the weakly
stretched regime, which is indicated by the observation that L∥
and σ2 is no longer proportional to the contour length for a
fixed force. When f > 0.4kBT/Lk, the polymer starts to enter the
highly stretched regime.
The normalized force−extension curves for different chain

widths collapse to a master curve from (kBT/f)w/Lk
2 ≈ 10−2 to

101. The slope of this master curve gradually increases with the
increasing force. The best power law fit to the data of the
thickest chain (red squares in Figure 3c) yields an exponent of
−0.72 ± 0.02, which is in agreement of theoretical prediction of
−2/3. For comparison, the exponent obtained from the
experiment of stretching poly(ethylene glycol) is −0.69 ±
0.08.37 The best power law fit to the data of thinnest chain
(black circles) yields an exponent of −0.93 ± 0.01. The dashed
line with the slope of −1 in Figure 3c corresponds to the exact
solution 3⟨L∥⟩/L = f Lk/kBT for the ideal chain under small
force. The normalized force−extension curves approach this
dashed line with the decreasing abscissa and merge with the
dashed line at (kBT/f)w/Lk

2 ≈ 0.01. The transition from the
Pincus regime to the extended Pincus regime is gradual.
The normalized fluctuation also gradually changes with

(kBT/f)w/Lk
2. The trends are in agreement with the theoretical

predictions. In the extended Pincus regime with (kBT/f)w/Lk
2

≪ 1, the fluctuation is independent of f. The fluctuation data
approach the horizontal dashed line with the decreasing (kBT/
f)w/Lk

2. In the Pincus regime, the best power law fit to the
thickest chain (red squares) yields the exponent of 0.36 ± 0.01,
close to the theoretical prediction of 1/3. The curves for
different chain widths in Figure 3d do not fully collapse;
however, it is expected that they will more completely overlap if
we extend the curves to smaller or larger abscissa values
because the scaling analysis predicts σ2 ≈ L (kBT/f)

1/3Lk
1/3w1/3

for the Pincus regime and σ2 ≈ LLk for the extended Pincus
regime.
In Figure 4, we plot the force−extension curves using a

different normalization of force. The forces in Figure 4 are over
a wider range than the forces in Figure 3, parts c and d, in order
to show the behavior beyond the Pincus and the extended
Pincus regimes. In addition, parts a and b of Figure 4 include
the curve for the simulation of an ideal chain with w = 0
(turning off the excluded volume interaction). When f <

Figure 3. Normalized extension (a) and normalized square fluctuation
(b) as a function of normalized cylindrical diameter in the simulations
of polymers in cylindrical confinement using different chain widths. (c
and d) Simulations of polymers under stretching force.
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0.4kBT/Lk, the force−extension curve for the ideal chain is very
well approximated by 3⟨L∥⟩/L = f Lk/kBT, where the extension
is proportional to the force. As expected, all force−extension
curves merge to the curve of the ideal chain when the stretching
force is larger than a critical value fc*. This critical value depends
on the chain width. For the thin chain, the critical force is less
than 0.4kBT/Lk. In this case, f ∈ [0.4kBT/Lk, fc*] is the extended
Pincus regime. For a thick chain, fc* is larger than 0.4kBT/Lk,
and then the extended Pincus regime will be skipped when
varying the force.
Figure 5 compares the force−extension curves obtained from

our simulations and the experiment by Dittmore et al.37 Forces

and extensions are normalized such that the force−extension
curve is independent of w/Lk in the Pincus regime and the
extended Pincus regime. The simulation data points are copied
from Figure 3c. Poly(ethylene glycol) was used in the
stretching experiment. Dittmore et al. fitted the force−
extension data in the extended Pincus regime to 3⟨L∥⟩/L =
f Lk/kBT and determined the Kuhn length of 1.1 nm. Dittmore

et al. also estimated the excluded volume interaction parameter
as 0.2 nm3 from the crossover force between the Pincus regime
and the extended Pincus regime. The excluded volume
interaction parameter is related to the chain width as πLk

2w/
2,47 and so we estimate the effective chain width is about 0.1
nm. Using this effective chain width, we replot the experimental
data from Dittmore et al. in Figure 5. The two gray lines are the
fit lines used by Dittmore et al. The asymptotic behavior of our
simulation data matches the two fit lines. However, the
transition from the Pincus regime to the extended Pincus
regime is much broader in our simulations than in experiments.
One possible reason is that we use a simple hard-core repulsion
for the segment−segment interaction. The gradual transition
has also been observed in the recent simulations using a lattice
model.39 We calculated the effective chain width in the
experiment of Dittmore et al. from the excluded volume
interaction parameter, which itself was obtained from a scaling
estimate containing an unknown, presumed to be of order
unity, numerical prefactor. If an effective chain width different
from 0.1 nm is used in Figure 5, the gray line will be unaffected,
and the black line will be shifted up or down with a fixed slope.
The above analysis only considered polymer properties in the

longitudinal direction. Significant differences are expected in
the transverse direction. Because of the lateral freedom of the
blobs (Figure 1), a polymer under applied force will have larger
fluctuations in the transverse directions compared to a polymer
in confinement. This is confirmed in our simulation results
(Supporting Information). We remind the reader that the ends
of the chain are not held fixed in the constant force simulations

3.3. Implications for Single Molecule Experiments.
Many stretching and confinement experiments use double-
stranded DNA (ds-DNA) as a model polymer.7,18,46,48 Our
simulation results and scaling analysis can be used to
understand which regimes ds-DNA is located in for given
experimental conditions, and conversely, to estimate parame-
ters for exploring a certain regime in future experiments. The
Kuhn length of bare DNA is about 100 nm9 and does not
appreciably change upon staining with a fluorescent dye.49 The
effective chain width depends on the ionic strength. For a
typical ionic strength of 50 mM, the effective chain width is
about 7 nm.12,50 The following estimations are based on Lk =
100 nm and w = 7 nm except otherwise specified.
First, we consider the experiments of ds-DNA in fluidic

channels. The minimum channel width to explore the de
Gennes regime is approximately Dc* ≈ b ≈ Lk

2/w = 1429 nm.
The determination of Dc* is arbitrary to within an order 1
constant due to the broad transition between the de Gennes
and the extended de Gennes regimes (Figure 3b). Our
selection of Dc* ≈ Lk

2/w is located at the middle of the
transition. The exact value of the minimum channel width Dc
for the extended de Gennes regime cannot be obtained from
the simulation results in the current study because we use a
coarse-grained model and only explore D ≥ 4Lk. We can know
the upper bound of Dc is 4Lk because the scaling L∥ ∼ D−2/3 is
valid for D ≥ 4Lk. The lower bound of Dc is 2Lk based on the
observation in our previous simulations45 of 8 μm DNA using
the touching bead model because the scaling L∥ ∼ D−2/3 was
not reached at D = 2Lk. The relevant data is shown in the
Supporting Information. Combining the upper and the lower
bounds, the uncertainty of Dc is within a factor of 2. We use the
upper bound Dc = 4Lk in the following estimation, because the
de Gennes scaling L∥ ∼ D−2/3 has never been observed in
experiments and we hope our estimation can help find the

Figure 4. (a) Normalized extension as a function of normalized force
in the simulations of polymers under stretching force using different
chain widths. (b) Normalized square fluctuation as a function of
normalized force for the same simulations.

Figure 5. Comparison of normalized force−extension curves from
simulations and experiments. The simulation points comprise all the
data in Figure 3c. The experimental data points are replotted from the
force−extension data by Dittmore et al.37 using L = 570 nm; Lk = 1.1
nm, and w = 0.1 nm in normalizations. The gray line and the black line
were used to by Dittmore et al. to fit the data in two regimes.
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experimental conditions to observe the scaling. If we use the
lower bound for Dc, then we are not certain that the de Gennes
scaling can be observed for D > Dc.
After obtaining Dc* and Dc, we estimate the minimum

contour lengths to enter the de Gennes and the extended de
Gennes regimes, Dc**, and Lc*. We assume L∥/D ≥ 6 must be
satisfied for the blob model to be applicable, just as in the
simulations. The value of L∥ can be obtained from the master
curve in Figure 3a, which is accurately described by ⟨L∥⟩Lk/Lw
= 0.83(Dw/Lk

2)−0.7015. This equation is obtained by fitting the
prefactor while the exponent is fixed as 1/ν−1 = 0.7015 with
the precise Flory scaling ν = 0.5877. This master equation can
be used to infer the effective chain width after measuring the
extension in a certain channel size. Inputting the parameters w
= 7 nm, Lk = 100 nm, and the condition L∥ = 6D into the
equation ⟨L∥⟩Lk/Lw = 0.83(Dw/Lk

2)−0.7015, we obtain Lc* ≈ 17
μm when D = 400 nm, and the parameter Lc** ≈ 148 when D =
1429 nm. Note that if we use lower bound of Dc = 200 nm, Lc*
becomes approximately 5.2 μm. This means ds-DNA should be
at least approximately 17 μm to enter the extended de Gennes
regime and at least approximately 148 μm to enter the de
Gennes regime for the typical ionic strength around 50 mM. As
an aside, we note that Latinwo and Schroeder51 recently
estimated the contour length inside a thermal blob to be
approximately 575 μm by considering the Kuhn length as 132
nm and taking the width as the bare ds-DNA diameter of 2 nm.
Their quoted width does not correspond to most experimental
conditions and the Kuhn length of DNA has shown to be
unaffected (remaining at a value of about 104 nm) by
intercalation of fluorescent dyes (e.g., YOYO-1).49

Many experiments used λ-DNA with a fluorophore stained
contour length of 21 μm. As the channel width decreases, λ-
DNA will jump from the weak confinement regime to the
extended de Gennes regime, skipping the de Gennes regime
altogether. Furthermore, the window size for the extended de
Gennes regime is quite narrow because the contour length 21
μm is only slightly larger than Lc ≈ 17 μm. As a result, the
scaling L∥ ∼ D−2/3 was not observed in the experiments of λ-
DNA.46,48 Persson et al.48 also used T4-DNA (72 μm when
stained) in experiments.48 On the basis of the calculation in the
previous paragraph, it is expected to observe the scaling L∥ ∼
D−2/3 for T4-DNA in the channel with the width from 400 to
900 nm (extended de Gennes regime). However, the channel
size was only varied from 90 to 260 nm by Persson et al. The
best-power law fits to the extension-confinement curves in
experiments of λ-DNA and T4DNA yielded the exponents
from 0.78 to 0.85.46,48 A more recent experiment using slightly
larger channels found an exponent of −0.77 ± 0.05, slightly
closer to the de Gennes scaling.52 This exponents are
significantly larger than 2/3 because they are fit to data in
the transition from strong confinement to the extended de
Gennes regime.38,45

For T4-DNA at moderate ionic strength around 50 mM, the
extended de Gennes regime exists from D = 400−900 nm, but
the de Gennes regime is skipped when varying D. Exploring the
de Gennes regime using T4-DNA is feasible under very low
ionic strength. For instance, when the ionic strength is 1 mM,
the effective chain width is approximately 54 nm,12,50 and the
Kuhn length is approximately 158 nm using the Odijk−
Skolnick−Fixman equation.53,54 Then, the two critical channel
sizes are Dc = 4Lk = 632 nm and Dc* = Lk

2/w = 462 nm . Since
Dc > Dc*, T4-DNA will skip the extended de Gennes regime and
jump from the strong confinement to the de Gennes regime at

D = 632 nm when increasing the channel size. The upper
bound of D for the de Gennes regime corresponds to the
channel size satisfying L∥ = 6D, which is approximately 1500
nm using the relationship ⟨L∥⟩Lk/Lw = 0.83 (Dw/Lk

2)0.7015.
In addition to the extension, it is of great interest to measure

the fluctuation in extension as a function of the channel width.
Su et al.55 measured the fluctuations in extension for λ-DNA
and T4-DNA in nanochannels, but in their studies they did not
greatly vary the channel dimension. Thus, it is difficult to
examine the D-dependence of fluctuation from their data. For
T4-DNA, it is predicted by our simulations and scaling analysis
that the fluctuation is almost independent of the channel size
from 400 to 900 nm when the ionic strength is 50 mM, and
that the fluctuation scales as σ2 ∼ D1/3 from 632 to 1500 nm
when the ionic strength is 1 mM.
Next, we consider the stretching experiment using double-

stranded DNA. Two characteristic forces are fc ∼ kBT/LK ≈
0.04 pN and fc* ∼ kBT/b ≈ 0.02 pN. These values are close to or
less than the minimum force applied in magnetic or optical
tweezers. So it is not suitable to use double-stranded DNA to
study the Pincus and the extended Pincus regimes, as
mentioned previously by Marko and Siggia.10 The polymer
used by Dittmore and co-workers37 to study the transition from
the Pincus regime to the extended Pincus regime is
poly(ethylene glycol) with a Kuhn length of approximately 1
nm. Single-stranded DNA (ss-DNA) has a Kuhn length of 1.24
nm under the ionic strength of 3 M, where the electrostatic
contribution to the Kuhn length is vanishingly small.56 Thus, ss-
DNA57 is also a candidate polymer to explore the Pincus
regime and the extended Pincus regime. Note that the
fluctuations referred in the current study are always in the
longitudinal (applied force) direction. The transverse fluctua-
tions provide additional information.42,58

In addition to the scalings of static properties, the scalings of
dynamics are also expected to be different for the de Gennes/
Pincus regime and the extended de Gennes/Pincus regime. The
relaxation time is determined by τ ≈ ζ/kspr, where ζ is the
polymer drag coefficient and kspr is the effective spring
constant.38 As mentioned in section 2.1, kspr and σ are related
by ksprσ

2 ≈ kBT, so the change in the scaling of fluctuation is
directly related to the change in the scaling of kspr, which affects
the scaling of τ. Using simulations, Radhakrishman and
Underhill investigated the different relaxation times in the
Pincus and the extended Pincus regimes.59 It is also expected
that the relaxation dynamics change from the de Gennes regime
to the extended de Gennes regime for a polymer in
confinement. If we assume the polymer drag coefficient is
proportional to the extension ζ ∼ L∥ ≈ D−2/3LLk

1/3w1/3, then
we can predict the scaling of relaxation time changes from τ ∼
D−1/3 L2Lk

2/3w2/3 in the de Gennes regime to τ ∼ D−2/3

L2Lk
4/3w1/3 in the extended de Gennes regime.38

4. CONCLUSIONS
Polymers pulled by their ends and confined to tubes have some
subtle differences that were shown by comparing the scaling
relations of both extension and fluctuations. Importantly,
fluctuations allow us to prove the existence of the newly
postulated extended de Gennes regime.35,38 The extended de
Gennes regime is analogous to the extended Pincus regime for
a polymer under force. However, the scaling of extension in the
extended Gennes regime is different from that in the extended
Pincus regime because the polymer stretching in these two
situations are driven by the excluded volume interaction and
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external force, respectively. Our comparison between confine-
ment and tension is limited to the classic/extended de Gennes/
Pincus regimes due to the coarse-graining model used in our
simulations. It will be of future interest to compare the
confinement and tension in the transition regime where the
characteristic lengths D and kBT/f are close to the Kuhn length
Lk, because this regime is more relevant to the experiments of
double-stranded DNA in confinement and nanofluidic devices
used for genome mapping.
Our analysis suggests that λ-DNA, which is often used in the

confinement experiments, is too short to enter the de Gennes
regime. Even for the extended de Gennes regime, the
corresponding range of channel size is rather small. It is
feasible to explore the extended de Gennes regime using T4-
DNA in high-salt solution, and also feasible to explore the de
Gennes regime using T4-DNA in low-salt solution. Although
the physics for the de Gennes regime and the extended de
Gennes regime are different, the scalings of extension
coincidently match each other. Distinguishing the extended
de Gennes regime from the de Gennes regime can be achieved
by measuring the scaling of fluctuations. Furthermore,
transitioning from the de Gennes regime to the extended de
Gennes regime is expected to affect the scaling of relaxation
time, which is related to the fluctuation in extension.
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