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ABSTRACT: Knotting is a prevalent phenomenon which occurs
at the macroscale (e.g., in headphone cords) and at the micro-
scale (e.g., in DNA and proteins). For a confined polymer, the
knotting probability can rapidly approach 100% as the degree of
confinement increases, while the mechanism of knot formation in
a confined space is unclear. In this work, we use computer simu-
lation to generate equilibrium conformations of a polymer con-
fined in a sphere or a tube and then calculate the knotting
probability, pknot, and the knot complexity that is quantified by the
minimal crossing number, Ncross. Surprisingly, we find a universal
correlation between pknot and ⟨Ncross⟩. Further analysis reveals that the universal correlation is caused by the fact that the
distribution of knot types, i.e., the knot spectrum, of a confined polymer follows a universal behavior, only depending on the
total knotting probability, regardless of the polymer length, bending stiffness, and degree of confinement. Such universal
behavior reveals a possible mechanism of knot formation in a confined space via random threading of segments among other
segments. The universal behaviors agree with prior experimental and simulation results of DNA knots and can be practically
useful to infer ⟨Ncross⟩ from pknot, or vice versa, in the case that either one is difficult to be measured.

1. INTRODUCTION
Knots are pragmatic constructs which predate the discovery of
fire, have been used by sailors for centuries, and pervade our
everyday life.1 Knotting is a ubiquitous phenomenon for linear
objects from the macroscopic scale,2−5 e.g., headphone cords
(Figure 1a), to the microscopic scale, e.g., actin filaments,6

DNA,7 proteins,8−10 and other polymers. Various effects of
knots have been discovered, including reducing mechanical
strength of polymers,6 jamming nanopore translocation,11

slowing down the relaxation of a compressed DNA12 and
stretching kinetics of DNA,13 affecting DNA ejection from a
capsid,14−17 facilitating catalysis of proteins18 and small
molecules,19 and impairing protein degradation.20 The prac-
tical applications of knots have also been explored, such as
controlling translocation speed of DNA through a nanopore
for sequencing.21,22 Knots affect the behaviors of polymers to
different extents, depending on the knotting probability and
knot complexity. For example, compared to a headphone cord
in free space, a headphone cord taken out of a small pocket
takes more time to be untied because the compression of the
pocket increases the knotting probability and the knot
complexity (Figure 1a). Experimental, theoretical, and sim-
ulation studies have been performed to investigate the knotting
probability and the knot complexity, such as in free space,23−29

in spatial confinement,30−35 under pulling force,6,7,36,37 by
electric-field compression,12,38 and with intrachain interac-
tions.39−41 Despite over a century of research on the topic of
knots, there is no understanding of how their probability of
occurrence relates to their geometric complexity.

In this paper, we report a surprising finding that the dis-
tribution of knot complexity, i.e., knot spectrum, for a confined
polymer follows a universal behavior which only depends on
the total knotting probability, regardless of the polymer length,
bending stiffness, and degree of confinement. The universal
knot spectrum leads to a universal correlation between the
knotting probability and knot complexity. Such universal
behavior reveals a possible mechanism of knot formation in a
confined space: random combinations of the over−under
statuses of apparent crossings.

2. METHODS
2.1. Generation of Confined Polymers. We first generate

equilibrium conformations of single polymers confined within a
sphere, a tube, or a slit using a modified PERM (pruned-enriched
Rosenbluth method42) and then pull both ends of each conformation
by force in a Brownian dynamics (BD) simulation for the purpose of
classifying knots (Figure 1b). The modified PERM generates polymer
conformations based on chain growth, i.e., placing a bead randomly in
space and then adding beads one by one until the desired length is
reached.43 In the modified PERM, we model a polymer as a string of
touching beads with three interactions: hard-core repulsion between
beads with diameters of a, bending energy to produce a persistence
length Lp, and hard-core repulsion between beads and the sphere or
tube that confines the polymer. For each parameter set {L, Lp, Dsphere
or Dtube}, we generate 1000−10000 conformations.
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The conformation generated by our modified PERM is used as the
initial conformation for BD simulation using the LAMMPS package.44

In BD simulation, there are two types of interactions: a purely
repulsive Lennard-Jones potential between beads and a bond inter-
action for adjacent beads by a FENE potential. In addition, we apply
pulling force of f = 50 kBT/a at both ends of a polymer (Figure 1b).
During BD simulations, we calculate the crossing number for the
projected conformation at each step and record the minimal value
among all steps, Ncross

sim . Note that Ncross
sim should be equal to or larger

than the actual minimal crossing number Ncross
knot defined for a knot

because trivial crossings might appear in every projected conforma-
tion during chain stretching. Our benchmark simulations of twist and
torus knots demonstrate Ncross

sim ≈ Ncross
knot for Ncross

knot ≤ 50 (see section S3
in the Supporting Information). Composite knots appear in our
simulations with a probability. For composite knots, the calculated
Ncross is the sum of Ncross of all prime knots. In addition to the crossing
number, we also calculate the knotting probability, pknot, for the
confined polymer conformations.
We also use Monte Carlo simulation29,45 to generate conformations

of circular polymers within a sphere, a tube, or a slit. Analysis of knot
states of these circular chains does not need to close two ends, and
these results are used to confirm that our finding about knots are not
caused by closing two ends.
The details of simulation methods, data analysis, and benchmark

simulations can be found in the Supporting Information and our
previous publications.43,46,47 Note that confinement is necessary to
explore high-pknot regime in the simulation of real chains with

computationally accessible lengths (≲10000 monomers). For
example, to make pknot ≈ 1, the chain length needs to be on the
order of 106 for flexible chains with excluded volume (EV)
interaction.29

2.2. Identification of Knots. In this study, we identify the knot
types and calculate Ncross by two methods: (1) the calculation of
Alexander polynomials and (2) the pulling process.

The first method is based on the fact that different knot types have
different Alexander polynomials, except that occasionally multiple
knot types share the same Alexander polynomial. We first tabulate the
Alexander polynomials for 250 knot types with 0 ≤ Ncross ≤ 10.48

Then, for a given polymer conformation, we project the conformation
on a plane, calculate the Alexander polynomial, and obtain the knot
type through the mapping between Alexander polynomials and knot
types. Note that some knots share the same Alexander polynomial; in
particular, composite knots from 31 and 41 knots share the same
Alexander polynomials with other prime knots. For example, the
composite knots 31#31 and 31#41 share the same Alexander poly-
nomials with 820 and 821 knots, respectively.

49 We always assign these
overlapped Alexander polynomials to composite knots due to the
following reasons. First, a previous study found that these overlapped
Alexander polynomials usually correspond to the composite knots.50

Second, we find that the probability of the overlapped Alexander
polynomial between 31#31 and 820 knots is close to the square of the
probability of 31 knot, which supports that the overlapped Alexander
polynomial comes from the 31#31 knot. Third, the probability of
observing the overlapped Alexander polynomial between 31#31 and
820 knots is so significant (up to a few percent) that it is unlikely from
a specific prime knot 820 (see section S9 in the Supporting
Information). For overlapped Alexander polynomials among two or
more prime knots, we assign them to the simplest knot types. Because
of rare cases of overlapped Alexander polynomials and the small
difference in Ncross among the knot types sharing one Alexander poly-
nomial, assigning these overlapped Alexander polynomials to the most
complex knot types does not make much difference in the distribution
of Ncross. For knots with more than 10 crossing, it is impractical to
determine Ncross through the Alexander polynomial because the
number of knot types increase rapidly with Ncross. There are 1, 1, 2, 3,
7, 21, 49, 165, 552, 2176, 9988, 46972, 253293, and 1388705 knot
types for the crossing number from 3 to 16.

The second method can estimate Ncross for a polymer conformation
with Ncross ≲ 100. We pull a polymer conformation in Brownian
dynamics simulation using LAMMPS package.44 We perform 106 to
2 × 107 steps and evenly save 1000 conformations. For these 1000
conformations, we calculate the crossing number for the projected
conformation at each step and record the minimal crossing number
among these 1000 conformations. Note that for each conformation
we calculate the two crossing numbers for the polymer conformation
projected on the two planes parallel with the pulling force and save
the smaller value. The conformation projected on the plane per-
pendicular to the pulling force has too many crossing number and
hence is not considered. Our benchmark simulations using polymer
conformation with 3 ≤ Ncross ≤ 143 demonstrate that the pulling
method occasionally overestimates Ncross by a few percent, which
suggests the pulling method is a reliable method for complex knots.

The results shown in this article are mostly based on the second
method because we deal with complex knots with Ncross up to 100.
We also use the first method, which is stricter, to confirm the universal
behaviors in the region with Ncross ≤ 10.

3. RESULTS AND DISCUSSION
3.1. Knotting Probability and Knot Complexity. Figure 2

shows the knotting probability pknot and the average minimal
crossing number ⟨Ncross⟩ when varying the diameter of the
sphere confining a polymer with L = 300a. We convert the
spherical diameter to the volume fraction ν ≡ (L/a)(a/D)3.
We find that both pknot and ⟨Ncross⟩ increase with ν and Lp.
Similar results were obtained previously by Micheletti
et al.51 Different from the monotonic effect of spherical

Figure 1. (a) Pulling a headphone cord to identify the knot inside.
(b) The top image shows an example of a spherically confined linear
polymer conformation generated by our PERM simulation with the
parameters L = 200a, Lp = 0, and Dsphere = 9a. The color of beads
gradually changes from blue to red along the polymer chain. We pull
the first (blue) and last (red) bead of this polymer in Brownian
dynamics simulation so that we can clearly observe and conveniently
classify the knot core, analogous to the macroscale example in
(a). In this example, the knot is 63, where 6 is the minimal crossing
number and 3 is the index among the knots with 6 crossings. The
bead size shown in images is less than the actual bead size in our
simulation for better visualization. (c) A circular polymer con-
formation generated by our Monte Carlo simulation with the
parameters L = 300a, Lp = 5a, and Hslit = 5a. (d) A circular polymer
conformation generated by our Monte Carlo simulation with the
parameters L = 300a, Lp = 5a, and Dtube = 10a.
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confinement on pknot, the tube and slit confinement lead to a
nonmonotonic effect on pknot with a maximum pknot at a cer-
tain confinement strength.33,35,52 To explore high-pknot
regime in tube confinement, we use tubes with closed ends
to increase the compactness of polymer conformations, while
the aspect ratios of tubes Ltube/Dtube are on the order of 10 or
more.
3.2. Universal Correlation. On the basis of the data in

Figure 2 as well as additional data for other chain lengths and
tube confinement, we make a scatter plot of pknot versus ⟨Ncross⟩
in Figure 3. Each data point corresponds to a simulation with a
certain parameter set: L, Lp, and Dsphere or Dtube. Despite the
large variation in L, Lp, Dsphere, and Dtube, surprisingly, all data
points appear to follow a master curve, which indicates uni-
versal correlation between the knotting probability and the
minimal crossing number. To confirm that the universal corre-
lation is not caused by the pulling process used in our knot
identification, we also analyze the knot types for Ncross ≤ 10
using the Alexander polynomials. Without the pulling process,
we observe the same universal correlation for linear chains
(Figure 4a) and circular chains (Figure 4b). Similar results are
observed from slit and tube confinement (see the Supporting
Information). Recall that we use PERM simulations to

generate linear polymer conformations and use Monte Carlo
simulations to generate circular polymer conformations.
It is worth noting that the universal correlation (master

curve) is an approximation, and small deviations from the
universal correlation can be seen in Figure 3. The deviations
may come from the systematic variation among different
polymer parameters or from noisiness in the statistics of a
limited number of polymer conformations. A trend revealed by
Figure 3b is that the deviation from the universal correlation
does not enlarge as Ncross increases. As discussed in section 3.6,
the universal correlation relies on confinement and is invalid
for polymers in free space. We expect that as the polymer
conformations gradually vary from the free-space to weak-
confinement to strong-confinement situation, the deviation
from the universal correlation decreases and may eventually
vanish. The data points in Figure 4 exhibit relatively large
deviations because the corresponding polymer conforma-
tions experience relatively weak confinement so that the
relevant knots are simple and can be identified by Alexander
polynomials.

3.3. Comparison with Previous Data. The data of pknot
and Ncross measured by previous experiments and simulations
fall onto this universal correlation as shown in Figure 3.
Arsuaga et al.14 obtained 97.94% DNA knots from P4 phage
with ⟨Ncross⟩ ≈ 25.2. Micheletti et al.51 obtained 91% knots
with ⟨Ncross⟩ ≈ 13.5 from the simulation of a spherically con-
fined polymer with L = 3.4 μm, Lp = 50 nm, a = 2.5 nm, and
Dsphere = 180 nm. Jain and Dorfman53 observed ∼59% con-
formations containing knots and composite knots with ⟨Ncross⟩
≈ 4.6 in the simulation of a channel-confined polymer with
L = 56 μm, Lp = 52.2 nm, a = 5.6 nm, and Dchannel = 60 nm.

3.4. Empirical Formula of Universal Behaviors. To
estimate the functional form of the universal correlation, we
make a log−log plot of ⟨Ncross⟩ versus 1 − pknot in Figure 3b,
and the data appear to be quasi-linear with a slope about 0.5 in
the middle region. Accordingly, we are inspired to propose the
following formula:

N p4/ 1 1cross knot⟨ ⟩ ≈ − − (1)

We use this formula because of its simplicity, the good fit, and
its correct asymptotic behaviors: (i) ⟨Ncross⟩ ≈ 3 for pknot → 0
and (ii) ⟨Ncross⟩ → +∞ for pknot → 1. The data points with
pknot ≳ 0.96 deviate from eq 1 but still follow a master curve.

Figure 2. Knotting probability (a) and the mean value of minimal
crossing numbers of knotted conformations (b) as a function of the
volume fraction of linear polymer conformations in spherical
confinement. The chain length is fixed at L = 300a. Each symbol
corresponds to a different persistence length Lp.

Figure 3. (a) Scatter plot of ⟨Ncross⟩ against pknot when varying the linear polymer length, the persistence length, and the confinement type. We use
the pulling process to estimate Ncross. The three black stars correspond to the data from previous experiments and simulations.14,51,53 The blue line
is from eq 1. (b) Plot of the same data, but with logarithmic scales of ⟨Ncross⟩ and 1/(1 − pknot). The blue and red lines are from eq 1 and 2,
respectively.
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Note that for a polymer with (L/a) segments, Ncross has an
upper bound ∼(L/a)2 (all segments cross others). A better fit
can be obtained using

y x x0.0467 0.6988 1.11322= − + + (2)

with y = ln(⟨Ncross⟩) and x = ln(1/(1 − pknot)), as shown by the
red line in Figure 3b.
3.5. Universal Knot Spectra. To understand the universal

correlation, we analyze the distribution of the minimal crossing
number, P(Ncross). Note that pknot can be determined from the
distribution of Ncross through

p P N1 ( 0)knot cross≡ − = (3)

Figure 5 shows three pairs of histograms of Ncross, while each
pair corresponds to two simulations with different parameters

of L, Lp, and Dsphere or Dtube but with nearly identical pknot (see
section S7 in the Supporting Information for the distributions
of Ncross over a series of pknot). We find that as long as pknot is

similar, the distribution of Ncross is also similar regardless of
L, Lp, and Dsphere or Dtube. A notable difference in the distribution
for different L is that the longer chain has a slight larger fre-
quency at large Ncross. In principle, a longer chain could explore
some large Ncross that cannot be reached by a shorter chain.
However, the contribution of such difference to ⟨Ncross⟩ is so
small that ⟨Ncross⟩ is insensitive to L.

3.6. Explanation of Universal Knot Spectra. Now we
discuss the mechanism behind the universal behavior. The uni-
versal behavior is possibly caused by the random com-
binations of the over−under statuses of apparent crossings.
We first elaborate the mechanism by an example and then
discuss the relevance to the universal behavior. A knotted
conformation can be mutated to another knot by switching the
over−under status of a crossing (Figure 6a). For the knot 10165

Figure 4. (a) Scatter plot of ⟨Ncross⟩ against pknot using the Alexander polynomials to identify knot types. The linear polymers conformations are
generated by PERM simulations. (b) Scatter plot of ⟨Ncross⟩ against pknot using the Alexander polynomials to identify knot types. The circular
polymers conformations are generated by Monte Carlo simulations.

Figure 5. Distribution of Ncross. In each plot, the results from two
simulations with similar pknot are compared. All red bars correspond to
L = 200a, Lp = 10a, and spherical confinement. The blue bars in
(a) and (b) correspond to the polymers with L = 1000a and Lp = 10a
in tube confinement, while the blue bars in (c) correspond to the
polymer with L = 1000a and Lp = 0 in spherical confinement.

Figure 6. (a) Diagram showing mutations of the conformation of knot
10165 by switching the over−under statuses of one or more crossings.
Mutants #1 and #2 are generated by switching the blue and green
crossings, respectively, while mutant #3 corresponds to switching both.
(b) Each symbol corresponds to the mutant conformations from the
knot 10165, 949, 821, or 77. The solid line is from eq 1. (c) An illustration
of crossings in a confined polymer. The shadowed circles indicate the
crossing points whose over−under statuses are random in an ensemble
of confined polymer conformations.
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with 10 crossings, there are 210 combinations of the over−
under statuses, including the knot 10165 itself. Our calculation
of the Alexander polynomial reveals that these 1024 confor-
mations contain 640 knotted conformations, i.e., pknot = 0.625
with ⟨Ncross⟩ ≈ 5.69. Note that the Rolfsen table of knots48

gives the Alexander polynomial for knots with Ncross ≤ 10 such
that we can identify the knot types of mutated conformations
through the Alexander polynomials and then obtain Ncross.
We find the pair of pknot and ⟨Ncross⟩ agrees fairly well with
eq 1. We have also performed such mutations for the knots
949, 821, and 77, and they also agree fairly well with our
empirical formula (Figure 6b).
The knot type of a polymer is solely determined by the

crossings on the projected conformation, such as the examples
in Figure 6a. In the projection of a substantially confined
polymer, the crossings mostly come from the two segments
that are far apart on the contour but brought together by
reflections of the confining walls (Figure 6c). This notion is
consistent with the fact that a substantially confined polymer
typically has orders of magnitude more apparent crossings than
the same chain in the absence of confinement. The far sep-
aration along the contour and the presence of reflection points
are likely to eliminate the orientational and positional corre-
lations between two segments involved in an apparent crossing
(Figure 6c). Eventually, the absence of correlations leads to the
random over−under status of each apparent crossings, which
results in the universal pknot−⟨Ncross⟩ relationship. We find that
the polymers in free space do not follow the universal behaviors
(see sections S9−S11 in the Supporting Information), which is
probably because the two segments involved in a crossing are
not separated by reflections of the confining walls and do not
hold the random over−under status.
It is worth noting that the knotting probability and knot

spectrum have been investigated previously. Koniaris and
Muthumukar50 found that the unknotting probability expo-
nentially decays with the chain length for various strengths
of excluded volume interactions. We reproduce their result in
free space and find that the exponential decay disappears in
confinement (see the Supporting Information). Shimamura
and Deguchi54 calculated the knot spectrum for ideal chains
and obtained an apparent exponent of αknot = 1.16 in pave ∼
exp(−αknotNcross) between Ncross = 3 and 8 for L = 300a. Here,
pave is the average probability for the knots with the same Ncross.
We reproduce the apparent exponent in free space and find the
apparent exponent changes rapidly in confinement (see the
Supporting Information).
3.7. Quantification of Knot Complexity by Rope

Length. In addition to the crossing number, the complexity
of a knot can also be described by the rope length Lrope, which
is defined as the contour length in the tightest knot core.55

We also find a universal correlation between the average rope
length ⟨Lrope⟩ and pknot. Previous studies55,56 have proposed
the relationship Lrope ∼ (Ncross)

α with 3/4 < α < 1, while our
simulation results obtain α ≈ 0.83. See sections S5 and S6
in the Supporting Information for more details about Lrope.
3.8. Applications of Universal Behaviors. The universal

pknot−⟨Ncross⟩ relationship discovered here is for equilibrium
conformations of single confined polymers. The relationship
between pknot and Ncross may break down for confined polymers
generated from nonequilibrium processes. Hence, examining
whether pknot and Ncross obey eq 1 is one method to evaluate
whether the observed knots in confined polymers are from an
equilibrium conformation. For example, the experiments of

E. coli DNA in 40−50 nm nanochannels by Reifenberger
et al.31 observed a low frequency (∼7%) of possible DNA
knots (or backfolds), while these possible DNA knots are
rather complex with the typical rope length of ∼1700 nm,
which is about 340 times a typical DNA effective diameter.
Such low-frequency and complex knots are probably caused by
the nonequilibrium process that drives DNA into a nano-
channel or by other reasons.
The universal knot spectrum suggests an experimental

approach to produce a desired knot spectrum by controlling
DNA compression. Recent experiments have observed
complex knots in single DNA molecules that are compressed
by electric fields12,13 or confined by nanochannels.57 Control-
ling the extent of DNA compression can tune the knot
spectrum that follows the universal behaviors.
The universal behaviors are also relevant to macroscale

objects, for example, squeezing a headphone cable into a
pocket many times and observing the knotting probability and
knot complexity. In a previous study by Raymer and Smith,5

a string with a diameter of 3.2 mm and a length from 0.46 to
6 m was tumbled inside a box with a size of 0.3 m × 0.3 m ×
0.3 m. In 3415 trials, they observed about 120 different
knot types with Ncross up to 11, and most knots are prime
knots. However, these macroscale objects are out of equi-
librium. Their knotting properties may not follow the universal
behavior but depend on the process of generating con-
formations.

4. CONCLUSIONS
In conclusion, we find universal knot spectra for confined
polymers, which only depend on the total knotting probability.
Such universal knot spectra suggest that the knotting in
confined polymers is likely to be created by random com-
binations of the over−under statuses of apparent crossings.
The mutations of over−under status of apparent crossings also
provide valuable insights into the pathways from one
topological state to another and the connectivity in knot space.
Knotting becomes common for a confined polymer, and

the knotting probability can rapidly approach 100% as the
degree of confinement increases, even for a short polymer
with hundreds of monomers. In addition, knotting (intrachain
entanglement) can dramatically affect polymer behaviors, akin
to how interchain entanglement affects polymer behavior, which
has been addressed extensively in classic polymer physics. Hence,
understanding knotting is important and inevitable for a confined
polymer and also has biological implications, e.g., DNA
knotting in viruses14,15 and in chromosomes.58−60 Considering
the simple polymer model used here, the universal behaviors
observed in this work may also apply for macroscopic linear
objects (Figure 1a), and may be relevant to protein knots,8−10,20,61

because the globular protein structures and confined polymers
share similar compact conformations.
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