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Abstract

The relaxation of dilute polymer solutions following stretch in uniaxial extensional flow is investigated via
Brownian dynamic simulations of a flexible freely-draining bead-rod chain. The bead-rod chain simulations are
compared to Brownian dynamic simulations of a FENE dumbbell and numerical calculations of a FENE-PM chain.
A universal relaxation curve for the stress decay from steady-state is found by shifting the results to lie on the curve
described by the relaxation of an initially straight chain. For all the models investigated, the initial rapid decay of the
polymer stress decreases at a rate which scales for large Weissenberg number, Wi as Wi2. Our universal curve is in
good qualitative and in some cases quantitative agreement with the available experimental data: it is particularly good
in predicting decay after stretch at the largest strains. We find hysteresis in comparing the stress versus birefringence
during the startup of flow and subsequent relaxation for the bead-rod chain and FENE dumbbell, but not for the
FENE-PM chain. The hysteresis in the latter model is lost in the preaveraging of the nonlinear terms. The bead-rod
model also displays a configuration hysteresis. The hysteresis observed in these models is in qualitative agreement with
recent experiments involving polystyrene-based Boger fluids. © 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

The physical mechanisms by which large stresses are generated in dilute polymer solutions
subjected to extensional flows are not well understood. The development of the filament
stretching rheometer has recently enabled many groups to measure the extensional stresses of
dilute and semidilute polymer solutions, both during the start-up of flow and subsequent
relaxation [1–3]. Upon the cessation of flow very rapid decays in the polymer stress were
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observed. The very fast nature of this decay is problematic from both an experimental and
modeling point of view. First, in the experiments there is a finite time over which the velocity
of the moving end-plates can be arrested and hence the flow ‘stopped’. This finite time to stop
the plates is on the order of 50–100 ms and the longest relaxation time for the polymers is 1–3
s. Any relaxation process which occurs on smaller time scales than 50 –100 ms cannot be
unambiguously resolved. Theoretically there is not a clear understanding of whether these
relaxation processes arise from viscous or elastic stresses. Furthermore, if they are elastic, how
can this fast relaxation be incorporated into a constitutive equation and how is the fast
relaxation process related to the polymer’s longest relaxation time and/or the polymer architec-
ture?

There have been relatively few theoretical or numerical studies of chain relaxation after
elongational flow. Grassia and Hinch [4] have recently presented a comprehensive study of the
stress relaxation of flexible bead-rod chains released from an initially straight configuration and
Doyle, Shaqfeh and Gast [5] have also examined the stress and birefringence relaxation of
initially straight chains. Both studies include the results that the initially straight chains have
O(N3) stresses and a characteristic long relaxation time which scales as N2 where N is the
number of beads in the chain. Grassia and Hinch showed that the initial stress decayed
exponentially on O(ja2/kT×1/N2) time scales where j is the drag on a bead, a is the connecting
rod length and kT the Boltzmann energy. Doyle et al. found that the birefringence initially
decayed exponentially on O(ja2/kT) time scales corresponding to the rotation of an individual
link in the chain. At intermediate times, 1/N2B t/(ja2/kT)BN2, Grassia and Hinch found a
power law decay of t− l/2 for the stress. In both relaxation studies the chains were initially in a
straight configuration and the initial decay of the stress and birefringence corresponded to
rotation of the smallest length scale in the chain.

Using the same model, Doyle et al. [5] and Rallison [6] demonstrated that the steady-state
extensional stresses were dominated by the elastic contributions for WiB0.06N2, where Wi is
the Weissenberg number defined as the longest relaxation time of the chain times the extension
rate (see Section 2.1 for a more detailed discussion). Doyle and Shaqfeh [7] further showed that
the transient extensional stresses were mostly elastic beyond a time of 0.075ja2/kT. Only in
steady flows at large stretch rates, Wi:0.06N2, did the elastic stresses approach the value for
a completely straight chain [5]. The stress at finite Hencky strains and moderate Wi is less than
the straight chain value [5] and so is not expected to decay at the same rate as the initially
straight chains. We expect the initial decay rate for the straight chain simulations to be an upper
bound and the decay rate at long times to be a lower bound on the values we obtain for stress
and birefringence relaxation for stretch at finite values of Wi and finite strain. Due to the large
difference of times scales in the fast and slow relaxation processes, it is worthwhile to investigate
the rates of relaxation for moderate Wi and strains to determine the relaxation rates one can
feasibly obtain in an experiment.

We present an investigation of the relaxation of dilute polymer solutions following extensional
flow using Brownian dynamics simulations of bead-rod chains and FENE dumbbells, as well as
numerical calculations of a FENE-PM model. The models are compared to the experimental
data of Spiegelberg and McKinley for monodisperse polystyrene-based Boger fluids [1,8] and the
data of Orr and Sridhar for polydisperse polyisobutylene-based Boger fluids [2].



P.S. Doyle et al. / J. Non-Newtonian Fluid Mech. 76 (1998) 79–110 81

We first present results for Brownian dynamics simulations of the bead-rod chains. A
universal relaxation curve for the stress decay from steady-state is found by shifting the results
to lie on the curve described by the relaxation of an initially straight chain. The universal
relaxation curve allows us to determine a characteristic time scale over which 50% of the stress
will relax. The relaxation from finite strains is discussed and compared to the FENE dumbbell
and FENE-PM chain models. Furthermore, the finite ramp-down time of the motor is
incorporated into the simulations and discussed in relation to the experiments. The universal
stress relaxation curve is compared to the relaxation of polystyrene(PS)-based Boger fluids [1]
and polyisobutylene(PIB)-based Boger fluids [2].

The start-up and the subsequent relaxation of the stress and birefringence for polystyrene-
based Boger fluids [8] is compared to the FENE-PM model, FENE dumbbell and to a FENE
dumbbell model with a conformation dependent drag coefficient. Hysteresis is observed when
comparing the stress versus birefringence during start-up and in the subsequent relaxation in
both the experiments and in the bead-rod chain and FENE models, but not in the FENE-PM
model. The physical and numerical origins of the hysteresis are discussed.

2. Polymer models

The simulation algorithms and development is presented in detail elsewhere [5,7]. We present
here a brief overview of the models.

2.1. Flexible bead-rod chain

The flexible bead-rod chain model consists of a series of beads which are connected via rigid
rods of length a which serve to hold the beads at a constant interbead separation [9]. The length
scale a corresponds to a Kuhn step in the polymer [10]. Stochastic Brownian forces are included
to model the solvent collisions acting on the beads [11,12]. The chains are freely-draining, i.e.
hydrodynamic interactions have been neglected. The drag on a bead is j and the characteristic
diffusive time scale is ja2/kT. The flow strength is characterized by the chain Weissenberg
number as the product of the longest chain relaxation time, l1=0.0142N2ja2/kT, obtained from
previous simulations [5] and the extension rate e; , Wi=l1e; .

The chain trajectories are calculated using a Brownian dynamics algorithm developed by Liu
[13] and the polymer stress is calculated using the noise filtering technique developed by Doyle
et al. [5]. Previously we have shown that the steady [5] and transient [7] stresses are dominated
by the elastic components for WiB0.06N2 at times scales larger than 0.075ja2/kT (on the order
of the smallest time scale in the polymer). The viscous stress is at least an order of magnitude
smaller than the elastic component [5,7] and is insignificant, thus we present only the total
polymer stress in this study, while remembering that the total is, in effect, the elastic stress. A
measure of the optical anisotropy of the chain is also calculated, namely the birefringence. The
birefringence measures the difference in the principal eigenvalues of the index of refraction
tensor [14].

In the simulation averages are taken over ensembles of 100–1000 chains. In considering the
bead-rod chain, all lengths are made dimensionless with the bead diameter a, stress with npkT
where np is the number density of polymer molecules in solution and the birefringence with
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np(a1−a2)
4p

3
(n2+2)2

6n

where n is the isotropic part of the index of refraction, a1 is the polarizability parallel to a
connecting rod in the chain and a2 is the polarizability perpendicular to a rod. In general there
are a number of different interesting time scales and these include, primarily l1 and (e; )−1.
However the bead diffusion time ja2/kT is also a useful scale. Thus, we shall endeavour to write
explicitly the nondimensionalization of time (using t always as a dimensional variable) in all
contexts and reserve the symbol e=e; t for the Hencky strain experienced by a material element
at a time t.

2.2. FENE dumbbell

The FENE dumbbell consists of two beads joined by a nonlinear elastic spring [10]. The
spring represents the entropic restoring force arising from holding the ends of a flexible bead-rod
chain with N beads at a fixed end-to-end vector Qi [10,15]. Implicit in the FENE force derivation
is the assumption that the bead-rod chain can sample all configurations for a given end-to-end
vector. The FENE spring force is [10,16]

FFENE
i =

HQi�
1−

�Q
Q0

�2n (1)

where Q=
QiQi and Q0 is the maximum extensibility of the dumbbell. The parameters H and
Q0 are related to a bead-rod chain through the relations H=3kT/(N−1)a2 and Q0= (N−1)a.
The relaxation time for the FENE dumbbell is lH=z/4H where z is the drag on one bead in
the dumbbell and the dimensionless extensibility parameter is b=HQ2

0/kT. For large N, the
extensibility parameter b is equal to 3N. When comparing the FENE model to the bead-rod
chains or the experimental data we will chose b based on the number of Kuhn steps in the
polymer.

Brownian dynamics simulations are performed using the semi-implicit predictor corrector
method proposed by Ottinger [12,17] to solve for the trajectories of the dumbbells. Ensemble
averages are taken over populations of 104 dumbbells. In considering FENE dumbbells, all
lengths are made dimensionless with 
kT/H, and stress with npkT. A Weissenberg number for
the dumbbell is defined by WiFENE=lHe; . The FENE birefringence has been made dimensionless

in the same way as for the bead-rod chain, namely with np(a1−a2)
4p

3
(n2+2)2

6n
.Again, we shall

write out explicitly the time nondimensionalization, and in general the important time scale is
lH.

2.3. Conformation dependent drag FENE dumbbell

The drag on a polymer will increase as it is unravelled by the flow. A conformation dependent
drag coefficient is a simple means to account for the additional drag on an uncoiled chain



P.S. Doyle et al. / J. Non-Newtonian Fluid Mech. 76 (1998) 79–110 83

[18–20]. In our conformation dependent drag FENE(FENE-CD) simulations, the drag on a bead
increases linearly with the end-to-end distance from a value of z0 at equilibrium to zmax at full
extension [7]. This introduces a new parameter zmax/z0, in addition to the standard FENE
parameters. To estimate zmax/z0 we have calculated the ratio of the drag on a straight rod to the
drag on a Zimm chain [21]

zmax

z0
=

6.28L
ln(L/d)5.11R

(2)

where L is the length of the chain, d is the diameter, and R is the equilibrium root-mean-square
end-to-end separation of the chain. We consider this as an upper bound for zmax/z0 since in the
simple bead-spring dumbbell model we place all the drag on two beads at the end of the chain
[22]. When comparing the FENE-CD model to experimental data we use zmax/z0 as an adjustable
parameter to obtain the best fit.

Brownian dynamics simulations are performed using the semi-implicit predictor corrector
method proposed by Ottinger [12,17] to solve for the trajectories of the dumbbells. Ensemble
averages are taken over populations of 104 dumbbells. The relaxation time for the FENE-CD
dumbbell is lCD

H =z0/4H and the dimensionless extensibility parameter is b=HQ2
0/kT. In

considering FENE-CD dumbbells, all lengths are made dimensionless with 
kT/H, and stress
with npkT. A Weissenberg number for the dumbbell is defined by WiFENE−CD=lCD

H e; . The
FENE-CD birefringence has been made dimensionless in the same way as for the bead-rod chain,

namely with np(a1−a2)
4p

3
(n2+2)2

6n
. In general the important time scale is lCD

H and we shall write

the time nondimensionalization explicitly.

2.4. FENE-PM model

The linear springs in a Rouse chain can be replaced by M FENE springs, but the viscometric
properties of the resulting model cannot be solved analytically [10]. The FENE-PM model [23]
replaces the squared length of each spring in the denominator of the FENE force law with the
average taken over all configurations and springs in a chain. After taking the limit as the number
of modes approaching infinity, the relaxation times for the modes (a=1, 2,…, M) are related via
the expression lR,a/lR,1=1/a2 [10,24] where lR,1 is the slowest mode and is equal to the slowest
mode in a Rouse chain.

Note that in modeling a chain with a fixed number of Kuhn-steps, the number of modes and
the extensibility parameter in the FENE-PM springs should not be varied independently and for
large chains are related by the condition 3b×M=N [12,23]. The constitutive equation for the
FENE-PM chain is a system of coupled differential equations [7,23] which are solved numerically
using a fourth order Runge–Kutta method [25]. In further discussion of the FENE-PM chain

stress has been made dimensionless with npkT, and birefringence with np(a1−a2)
4p

3
(n2+2)2

6n
.

The Weissenberg number is based on the longest relaxation time, and when necessary, we will
again show any time nondimensionalization explicitly.
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3. Simulation results and important scalings

In this section we discuss the relaxation of polymer (bead-rod) chains following uniaxial
extensional flow where the primary axis of extension of the flow is in the ‘1’ direction. In
Fig. 1 we show the relaxation of the polymer stress from the steady-state value in extensional
and also shear flow for a range of Wi and N. In extensional flow the rate of relaxation rapidly
increases as the Weissenberg number increases. The results for several values of N are shown for
Wi=10.65 and collapse onto the same curve. The relaxation of the shear stress is much slower
than the extensional stress for Wi\1.065. For Wi=1.065, the shear stress t12

p and extensional
stress relax identically while the normal stress difference t11

p −t22
p relaxes more slowly. This can

be understood by considering the Rouse model in which each mode a relaxes exponentially with
a characteristic time lR,a [10]. For a large number of modes [24], the modes are related via the
expression lR,a/lR,1:1/a2 where lR,1 is the slowest mode. At steady-state in shear flow,
tp

128 � lR,a and tp
11−tp

228 �(lR,a)2. Thus due to the spacing of the modes, t12
p has a larger

contribution from the faster modes and hence decays faster than tp
11−tp

22. The simulation

Fig. 1. Relaxation of the the bead-rod chain polymer stress from the steady-state value in extensional and shear flow
versus time divided by the longest relaxation time. For extensional flow the polymer stress difference, tp

11−tp
22, is

shown and for shear flow both tp
11−tp

22 and tp
12. The stress is divided by the value when flow is stopped.
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Fig. 2. Relaxation of the bead-rod chain polymer birefringence from the steady-state value in extensional and shear
flow versus time divided by the longest relaxation time. The birefringence is divided by the value when flow is
stopped.

results in Fig. 1 are qualitatively very similar to those of Fig. 4 in Spiegelberg and McKinley [1]
for the relaxation of polystyrene-based Boger fluids. We will return to a quantitative comparison
in due course.

In Fig. 2 we show the birefringence relaxation from the steady state value for the same range
of N and Wi as in Fig. 1. In a similar fashion to the stress, the birefringence relaxes faster as
Wi increases and for Wi=1.065 the birefringence arising in shear and extensional flow relax
almost identically. Also, for Wi=10.65 the curves coincide for various values of N. However,
the birefringence relaxes much more slowly than the stress for Wi\1.065.

In extensional flow, the flexible bead-rod chains are extended almost completely straight at
steady-state for Wi]1. One might speculate then that the relaxation of the stress and
birefringence should be similar to the relaxation of an initially completely straight chain aligned
along the primary axis of extension, the ‘1’ direction. In Fig. 3(a) we show the stress relaxation
from steady state in extensional flow compared to the relaxation of an initially straight chain
with N=100. Note the initial value of the stress for a straight chain with N=100 is 333399 and
scales as N3 [4,5]. (This stress must be completely Brownian stress since there is no flow ever
applied to the straight chain in this calculation.) In Fig. 3(a) we only show the portion of the
straight chain relaxation curve in which the scaled stress is of comparable magnitude to the
extensional flow stresses. For the relaxation from extensional flow the time has been shifted by
an additive term such that the initial stress lies on the relaxation curve for the initially straight
chain. The value of this dimensionless shift factor is different for each value of Wi, but does not
significantly change with increasing N at a fixed Wi=10.65. This can be understood by
considering the asymptotic expression for the steady-state viscosity at large Wi [5,26]:

hp,ss= (1−0.34/Wi)N(N2−1)/12 (3)
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where the viscosity has been made dimensionless with npja2. (Note that this expression is
derived for the total stress of the bead rod chain including the viscous stresses [5,26]. However,
as we have shown elsewhere and discussed above the Brownian stresses dominate for WiB
0.06N2. Thus this result is a very good approximation for the Brownian stresses for almost all
reasonable values of Wi, and therefore can be used to understand the relaxation of Brownian
stresses.) By combining Eq. (3) with the expression l1=0.0142N2ja2/kT and assuming N is
large, the scaled extensional stress difference at large Wi can then be rewritten as

tp
11−tp

22

N−1
=5.87Wi−2 (4)

where we recall that tp
11−tp

22 has been made dimensionless with npkT. Thus the steady-state
extensional stress divided by N−1 is only a function of Wi and the magnitude of the time shift
in Fig. 3 should also depend only on Wi. It is remarkable that by merely shifting the time all
the stress curves collapse onto a universal curve described by the relaxation of an initially

Fig. 3. (a) Relaxation of the bead-rod chain polymer stress from the steady-state value in extensional flow versus time.
The solid line denotes the relaxation of an initially straight chain with N=100. The time for the extensional stress
relaxation curves has been shifted so that the initial stress lies on the initially straight chain curve. In (b) the relaxation
of the birefringence is plotted versus time. The time for the extensional birefringence relaxation curves has been
shifted by the same magnitude as in (a) for the corresponding Wi.
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Fig. 4. Log–log plot of the stress versus time for the relaxation of initially straight bead-rod chains. The symbols
denote relaxation for N=25–400 and the line is a fit to the power law region which decays as t−1/2.

straight chain. In Fig. 3(b) we show the relaxation of birefringence for the same range of N and
Wi as in Fig. 3(a). The time for the relaxation curves following flow have been shifted by the
same amount as in Fig. 3(a) and these curves also collapse very near to the curve for the
relaxation of an initially straight chain. However, unlike the stress, the birefringence at t=0 is
close to the maximum value for a straight chain, N−1. Note that a similar universal curve
describing stress relaxation for the FENE-P (i.e. FENE-PM with M=1) dumbbell model is
described in Appendix A.

Having shown that the stress and birefringence can be collapsed onto the curves described by
the relaxation for initially straight chains we turn now to a discussion of the important scalings
for relaxation of an initially straight chain. Hinch and Grassia [4] have done an extensive study
of the stress relaxation for initially straight chains and Doyle et al. [5] have examined the
birefringence and stress relaxation under the same conditions. The straight chains have a finite
stress [4,5] equal to (N3/3+2N/3−1) which decays on O(l1/N4) time scales [4]. At long times,
the stress is O(N−1) and decays exponentially over l1, time scales [5,4]. At intermediate times
the stress is O(N2) and decays as t−1/2 [4]. We now must consider what portion of the stress
relaxation curve for initially straight chains is relevant to the relaxation from extensional flow.
Our simulations and Eq. (4) demonstrate that the steady-state extensional stress will be O(NWi),
however in Fig. 3 the initial stress decay is not a simple exponential. Thus we must consider the
power-law behavior described by Grassia and Hinch [4] at intermediate times and the transition
to exponential decay at long times. Grassia and Hinch worked with relatively small chains,
N510, in their study of the intermediate-to-long time scalings. We have performed additional
simulations with much longer chains, N5400, to better assess over what region the power-law
behavior will hold and how this will change with increasing N. In Fig. 4 we show the stress
divided by N−1 versus time divided by l1 for chains which are initially aligned straight in the
‘1’ direction. Plotted in a log-log manner the data clearly shows the power-law decay described
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by Grassia and Hinch [4]. The best fit to the data in the power-law region is given by the solid
line, (t11

p −t22
p )/(N−1)=1.67(t/l1)−1/2 which is very close to the value reported by Grassia and

Hinch [4], 1.49(t/l1)−1/2. The time where the stress first begins to obey the power-law decay
decreases as N increases. For N=400 the stress begins to show power-law decay when it is
O(104) (i.e. t/l1:O(10−7)) which would correspond to a steady-state extensional stress at
Wi:1700. At much longer time scales, deviations from the power-law behavior occur when
t/l1:0.1 or (tp

11−tp
22)/(N−1):8−10, but the data for all N still fall on the same

universal curve. Thus the magnitude of the relaxing polymer stress following cessation of
homogeneous extensional flow for all reasonable Wi will fall on the stress relaxation curve in
Fig. 4 in a region in which the data collapses onto a universal curve when scaling the
dimensional stress with npkT(N−1) and time with l1. Furthermore, the starting point for the
relaxation after extensional flow can be determined using Eq. (4) and thereafter the stress will
relax along the master curve. Again, we refer to Appendix A for the equivalent master curve for
relaxation of stress in the FENE-P dumbbell model.

In a similar manner, the birefringence relaxation for initially straight chains can be described
by a master curve. In Fig. 5 the birefringence divided by N−1 is plotted versus time divided by
l1. As N increases, the curves begin to collapse onto a single curve. The inset of Fig. 5 shows
the birefringence at small times which also converge as N increases. Previously Doyle et al. [5]
showed that the dimensionless birefringence initially decays as D%= (N−1)(1−12kTt/a2j) for
kTt/a2j�1/12 and decays exponentially at long times as D%= (N−1)e− t/l1. Another way to
express this result is that the birefringence will decay as D%= (N−1)(1−0.17N2t/l1) for
t/l1�5.87/N2. In the limit of large N, there will thus appear to be a birefringence ‘jump’ when
plotting D% versus t/l1, but the magnitude of this apparent jump will be very small as seen in the
inset of Fig. 5. Note that this occurs because the birefringence is O(N) for both the short time
and long time scalings. While the initial relaxation of the birefringence in Fig. 5 cannot be

Fig. 5. Semilog plot of the birefringence versus time for initially straight chains with N=25–400. The inset plot shows
the birefringence at short times.



P.S. Doyle et al. / J. Non-Newtonian Fluid Mech. 76 (1998) 79–110 89

Fig. 6. Characteristic time, l50% stress loss/l1, for the polymer stress to reach 50% of initial value at steady state versus
Wi. Symbols denote results for bead-rod chains, FENE dumbbells and FENE-PM model. The solid line denotes the
theory presented in the text which is valid for large Wi for the bead-rod chains, and the dashed line is the theory
developed in the Appendix which is valid for FENE-P dumbbells.

described by a single exponential, the initial fast relaxation is not nearly as rapid as found for
the stress.

To quantify the relaxation rate of the steady-state extensional stress we have defined a
characteristic time over which the stress decreases to 50% of the initial value when the flow
stopped. In Fig. 6 we plot the characteristic time versus Wi. The symbols denote simulation
results for bead-rod chains, FENE dumbbells and the FENE-PM model. The solid line given by

l50%stress loss

l1
=

0.24
(Wi−0.34)2, (5)

was obtained by assuming the stress decays as (tp
11−tp

22)/(N−1)=1.67(t/l1)−1/2 and that the
initial value of the stress is given by Eq. (4). Eq. (5) is in good agreement with the bead-rod
chain simulations for large Wi (Fig. 6). In Fig. 6, we show that the characteristic decay times for
the FENE and FENE-PM models at Wi\2 are indistinguishable for various values of b and
various numbers of modes. Previously Doyle and Shaqfeh [7] showed that the FENE-PM stress
in steady extensional flow is dominated by the contribution from the slowest mode and hence
the relaxation should proceed as if it was a single-mode FENE-P model with an effective FENE
parameter beff=b×M, where we recall that M is the number of modes in the FENE-PM model.
Thus we need to examine why the FENE and FENE-P models relax similarly at a given Wi for
all b.
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First we consider the FENE dumbbell. At large WiFENE the dumbbells are aligned almost
completely in the ‘1’ direction and the magnitude of t11

p is much larger than t22
p . Assuming t22

p

is negligible, then tp
11:2bWiFENE [10]. Furthermore, since the distribution of the dumbbell

lengths is very narrow [27] we can approximate the distribution by a d function. Neglecting
Brownian motion, which is initially much smaller than the elastic restoring force, and assuming
the only nonzero component of Qi is Q1, the rate of change of the stress divided by the initial
value is given by

dt11/d(t/lH)
2bWi

=
−1

1−Q2
1/b

−
Q2

1/b
(1−Q2

1/b)2 (6)

Since the distribution of dumbbell lengths is assumed to be a d function, we can use the stress
to determine that Q2=2bWiFENE/(1+2WiFENE), and Eq. (6) can be rearranged to give

dt11/d(t/lH)
2bWiFENE = − (1+2WiFENE)2 (7)

Thus the rate of the initial stress decay will be independent of b. We have performed many
simulations to verify Eq. (7) but do not report them here. Although the steady-state distribution
of dumbbell lengths for the FENE-P dumbbell is very broad [27], the previous development is
still valid. This follows from the fact that FENE-P model preaverages the stress and the FENE
force, thus setting the nonlinear term in the denominator of the FENE force equal to the
ensemble average. It follows that the model is completely described by the second moment. The
only difference is that the steady-state extensional stress for the FENE-P model at large
WiFENE-P is t11: (2b−2)WiFENE−P [17] instead of 2bWiFENE as in the FENE model. This
difference is negligible since usually b�2. At large Wi, all the models (FENE, FENE-PM and
bead-rod) will have initial stress decay rates that scale as Wi2 and thus increase rapidly with
increasing Wi. A more detailed analysis of the stress relaxation of the FENE-P dumbbell in
Appendix A shows that an analytic result can be obtained for the universal stress relaxation
curve in this instance. Furthermore, this analysis yields

l50%

lH

:
3

8Wi2
(8)

as an asymptotic result in the limit Wi��. This result is presented in Fig. 6 by the dashed
curve and it agrees very well with the full numerical results for the FENE-P.

What is striking about the relaxation times in Fig. 6 is that they are much smaller than the
longest relaxation time; for example at Wi=10, 50% of the stress decays over a time which is
merely 0.003l1. In Fig. 7 we show sample chain configurations for N=200 during relaxation
from a steady-state configuration in extensional flow at Wi=10.65. The percentage of the
original stress following the cessation of flow is shown and the time elapsed since the flow is
stopped. It is clear from Fig. 7 that very small changes in the chain conformation can result in
very large changes in the stress. One can visually discern that the birefringence barely changes
(less than 5% change) over the time scale in which 70% of the stress has decayed. Further
relaxation of the configuration proceeds from the ends inward because the outer links of the
chain are under less tension than the inner ones. Perkins et al. [28] have used fluorescence
microscopy to observe single DNA molecules relaxing from a stretched configuration and report
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seeing the ends of the molecule formed a compact ball (with diameter of approximately 10 Kuhn
steps) as it relaxed. Furthermore, Brochard-Wyart and Buguin [29] have introduced the
‘Stem–Flower’ model for the conformation of a polymer chain held fixed at one end and subject
to a strong uniform flow. The chain relaxes to the equilibrium coil by progressive destruction of
the internal ‘stem’ from the free end inward. The development of a ball or flower is indeed
observed as we follow the relaxation of the chains (Fig. 7). We see that even at t=0.56l1, the
chain is still significantly stretched and aligned. The memory of the original stress has almost
vanished while the memory of the alignment has not. If the flow were to be started again at
t=0.56l1, the response of the chain would be very different than if it were a random coil.
Moreover, a stretched chain in a Lagrangian time-varying flow may not relax to its equilibrium
configuration before it encounters a new region of the flow field. The response of the chain will
depend on its orientation and stretch which are determined by its flow history.

In all experiments that measure polymer stress relaxation there is a finite time over which the
movement of the apparatus creating the flow can be arrested and hence the ‘flow stopped’ [2,30].
In the filament stretching rheometer, the fastest deceleration time reported in the literature by
Orr and Sridhar [2] is 50 ms and the flow is linearly decelerated. The longest relaxation time for
the commonly used Boger fluids is l1=1−4 s [1,2]. Thus the deceleration time is 0.0125−
0.05l1 and is thus comparable to the simulated characteristic relaxation times in Fig. 6. To
better assess the affects of a finite deceleration time we have performed additional relaxation
simulations in which the Weissenberg number is linearly decreased from the original flow value
to zero. In Fig. 8 the stress relaxation from the steady-state value at Wi=3.55 for N=50 is
plotted versus time. In the simulations the flow has been linearly ramped from Wi=3.55 to
Wi=0 over the times indicated in Fig. 6. The characteristic time for a 50% stress decay at
Wi=3.55 with a zero deceleration time (i.e. instantaneous cessation of extension) is 0.016l1.
Clearly, the finite deceleration of the flow can significantly affect the stress relaxation. Over the
time scale during which the flow is decelerated, the stress decays almost linearly, as can be seen
most easily for deceleration times of 0.03l1 and 0.1l1. The steady-state extensional stress has
been shown earlier to be linear in Wi, Eq. (4). The dimensionless stretch rate decreases linearly

Fig. 7. Sample chain configurations during relaxation for N=200 relaxing from a sample steady-state configuration
at Wi=10.65. The percentage of the polymer stress, defined as the polymer stress divided by the stress when the flow
was stopped at time=0, remaining after the flow ceases is also shown.
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Fig. 8. Polymer stress, tp
11−tp

22, divided by steady-state stress versus time for relaxation from steady-state at N=50,
Wi=3.55. The flow is linearly ramped down starting at time l1=0 from Wi=3.55 to Wi=0 over a time of
0−0.1l1.

as the flow is decelerated, and the stress is quasi-steady in that it can respond to the flow much
faster than the flow is changing. In other words if ldecel is a characteristic time for the motor to
decelerate (e.g. the reciprocal of the deceleration rate) then if the 50% stress relaxation time,
l50%, is such that l50%/ldecelB1 the chain responds in an almost instantaneous or ‘quasi-steady’
fashion to the motor deceleration. Eventually the Weissenberg number of the flow becomes
small and the corresponding steady-state stress at that current Wi decreases faster than the chain
can respond.

Orr and Sridhar [2] have denoted the stress that decays rapidly during the deceleration of the
flow as ‘viscous dissipation’ and they have further defined it as equal to the difference in the
stress at the time when the deceleration of the flow begins and the stress as the end of the
deceleration time. They recognize that the experiment can not distinguish between an instanta-
neous stress decay and a fast elastic stress decay of duration less than 50 ms. The viscous
dissipation (defined in this way) is found to scale as Wi [2]. In Fig. 9 we show results for
simulations in which the velocity is decelerated over a time of 0.06l1. The stress is separated into
the stress remaining when the Wi=0 at t=0.06l1, i.e. the apparent elastic stress, and the
difference in the stress at t=0 and at t=0.06l1, i.e. the apparent viscous stress. Assuming that
the stress is quasi-steady, the rate of change of the stress is equal to the rate of deceleration,
Wi/0.06l1. The apparent viscous stress should then scale linearly in Wi which is consistent with
the results in Fig. 9 and the experiments of Orr and Sridhar [2].

It is very difficult to experimentally measure steady-state extensional stresses. Furthermore,
most other flows of interest, such as flow past a sphere [31] or through a contraction [32], are
Lagrangian unsteady and there is only a finite extensional strain that a polymer will experience.
It is thus important to consider the response of the stress at finite strains. In Fig. 10(a,b) we
show the start-up and relaxation of the polymer stress for N=100 at Wi=10.65 and
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comparison to the FENE, FENE-PM and Rouse models. The flow is stopped after a total strain
of 1, 2, 3, 6. The rate of the stress decay is a strong function of total strain for all the models.
For strains e:1–2, the FENE-PM model is in very good agreement with the bead-rod chain
while the FENE model is in poor agreement. At strains e:3 and e]6 the FENE model is in
excellent agreement with the bead-rod chain both qualitatively and quantitatively. The FENE-
PM model is in good agreement with the bead-rod chain for strains of 1–2 while at a strain of
3 it relaxes much more slowly than the FENE or bead-rod model. However, at a strain of 6 the
relaxation of the FENE-PM stress is very similar to both the FENE and the bead-chain results.
In Fig. 10(b) the bead-rod chain is compared to a Rouse chain with 10 modes. The Rouse chain
is in very good agreement with the bead-rod chain for a strain of 1 and the agreement becomes
progressively poorer for larger strains. The FENE-PM model in Fig. 10(a) and the Rouse chain
results are identical at a strain of 1. Note that the rate of stress decay of the Rouse chain
decreases with increasing strain.

In Fig. 11(a,b) we plot the characteristic time for 50% of the bead-rod chain initial stress to
decay versus total Hencky strain before the flow stops. In Fig. 11(a) for N=50 the relaxation
time monotonically decreases with increasing strain for all Wi. Also shown in Fig. 11(a) are the
results for N=100, 200 at Wi=10.65. At large strains the relaxation times are nearly identical
which agrees with the universal relaxation description from steady-state discussed earlier. What
is interesting is that at a strain of 2 the relaxation time increases with increasing N and this
relaxation time is larger than the value at a strain of 1. We can better understand this by
considering the relaxation times in Fig. 11(b) for Wi=10.65. First, the FENE model (or the
FENE-P dumbbell) predicts a relaxation time which will always decrease with increasing total
strain. As the dumbbells experience a larger strain the restoring force becomes increasingly

Fig. 9. Polymer stress, tp
11−tp

22 versus Wi for relaxation from steady-state of chains with N=50. The flow has been
decelerated over a time of 0.06l1. The stress is separated into an apparent viscous stress equal to the difference in the
initial stress when the flow stops at t=0 and the stress at t=0.06l1. The apparent elastic stress is the stress remaining
at t=0.016.
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Fig. 10. Start-up and relaxation of polymer stress for N=100 and Wi=10.65 versus strain. The strain during
relaxation is defined based on the strain-rate during flow, strain=Wi× time. In (a) the bead-rod chain model is
compared to a FENE dumbbell with b=300 and a 10-mode FENE-PM model with b=30. In (b) the bead-rod chain
is compared to a 10-mode Rouse chain. The stress relaxation is shown from total strains of 1, 2, 3, 6.

nonlinear and the stress decays faster. Conversely, the Rouse model predicts that the relaxation
time will always increase with increasing strain. In the Rouse model the springs have a linear
response and the fast relaxation times are due to contributions from fast modes. The relaxation
time for each mode does not change with increasing strain, but the relative contribution to the
stress from each mode does change. At very small strains, e�1, all the modes contribute
significantly to the stress with a dimensional linear viscoelastic contribution of tp

11:npkTlR,a.
Thus the effective relaxation time of the stress can be quite small. At large strains, most of the
fast modes saturate at a steady stress while the contribution from the longest mode continues to
increase exponentially. The relaxation times for the modes in the FENE-PM model in Fig. 11(b)
are equal to the Rouse chain times at small strains when the nonlinear terms are small and equal
to the FENE relaxation times when the stress is dominated by contributions from the longest
mode. At intermediate strains there is a local maximum in the relaxation time, precisely where
the FENE and Rouse curves cross. The FENE-PM model qualitatively describes the trend in the
relaxation times for the bead-rod chain with N=200 at all strains and is almost quantitative at
high strains. Thus multimodes are needed at small strains to correctly predict linear viscoelastic
response of a polymer chain and a single nonlinear mode is sufficient at large strains.
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We now turn to a comparison of the birefringence. In Fig. 12(a,b) the start-up and relaxation
of the birefringence are shown for the bead-rod model with N=100 at Wi=10.65 and
compared to the predictions of elastic bead-spring models. In Fig. 12(a) the FENE-PM model
is in excellent agreement with the bead-rod chain for the start-up and relaxation at strains e52.
At a strain e=3 the transient growth of the birefringence is in agreement with the bead-rod
chain but the relaxation as predicted by the FENE-PM is slower than that given by the bead rod
chain. For larger strains the FENE-PM model underestimates the bead-rod chain birefringence
and it also relaxes more slowly. The FENE model underestimates the birefringence during
start-up and shows a slower relaxation. At a strain of e=6 the FENE and FENE-PM models
have the same birefringence which is near to the maximum possible value of 60 for the given
model parameters. The elastic dumbbell models underestimate the birefringence at large strains
because the birefringence is based on the small distortion of a Gaussian coil [24]. The
birefringence for a straight bead-rod chain will be larger than that of a completely straight
dumbbell by factor of a 5/3. We could rescale the FENE and FENE-PM birefringence by this
factor of 5/3 but this would give a poor agreement for the FENE-PM chain at moderate strains.
Rescaling the FENE dumbbell predictions would improve the fit to the bead-rod chain during

Fig. 11. Characteristic time, l50%stress loss/l1, for the polymer stress to reach 50% of initial value at steady state versus
total strain before flow is stopped.
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Fig. 12. Start-up and relaxation of birefringence for N=100 and Wi=10.65 versus strain. The strain during
relaxation is defined based on the strain-rate during flow, strain=Wi× time. In (a) the bead-rod chain model is
compared to a FENE dumbbell with b=3000 and a 10-mode FENE-PM model with b=30. In (b) the bead-rod
chain is compared to a 10-mode Rouse chain. The stress relaxation is shown from total strains of 1, 2, 3, 6.

start-up but not during relaxation. As we observed for the tensile stress, the FENE-PM model
is in better agreement with the bead-rod chain than the FENE model during relaxation after
small strains because of the presence of multiple modes in the FENE-PM model. Thus the linear
Rouse model also is in good agreement with our bead rod calculations for small strains, cf. Fig.
12(b).

4. Stress-birefringence hysteresis

Another way to examine the evolution of stress and birefringence contributions from a
polymer chain during the start-up and relaxation (or for that matter during any Lagrangian
unsteady flow) is to plot stress versus birefringence. In a dumbbell model the birefringence is
directly related to the end-to-end separation of the chain. Plotting the data in this way gives
insight into the average polymer stress at a given average deformation. In Fig. 13(a) we have
plotted the scaled stress difference versus birefringence for the FENE dumbbell model at several
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values of the Wi and b and also for a 5-mode FENE-PM model. The simulation is run to a large
strain (e:6) such that the stress and birefringence attain their steady-state values. For a given
Wi, the FENE results for chain extensibilities b=150 and 600 collapse onto a single curve. We
have performed simulations for many values of b and Wi which also show the same collapse but
only representative results for a few values of b and Wi are shown in Fig. 13(a) for clarity. For
the FENE dumbbell, during transient elongation the stress proceeds along the upper branch of
the loop and reaches a maximum corresponding to the steady-state value. Then when the flow
is stopped, the stress rapidly relaxes along the lower branch of the loop. There is thus a
pronounced hysteresis in following the stress versus birefringence during start-up of extensional
flow and relaxation after flow is stopped. As the Wi increases, the degree of hysteresis for the
FENE dumbbell in Fig. 13 (a) increases. By contrast, the FENE-PM model however does not
show any hysteresis because of the preaveraging. In fact, there can be no such stress/conforma-
tion or stress/birefringence hysteresis in a FENE-P or FENE-PM chain, or, in fact, in any model
in which the polymeric stress is written as a function of just the second moment of the

Fig. 13. Polymer stress versus birefringence for start-up of extensional flow to steady-state and subsequent relaxation.
The start-up period of the flow has been run to a total strain of 6. In (a) the results are shown for the FENE and
FENE-PM models and in (b) results for the bead-rod chain and for a FENE dumbbell. The FENE dumbbell stress
and birefringence in (b) have been rescaled by assuming that b=3N. For the FENE and bead-rod chains, during the
start-up the data follow the left branch of the loop and flow is stopped at the peak of the loop. Relaxation then
proceeds down the right branch. For the FENE-PM model in (a) the start-up and relaxation fall on the same curve.
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instantaneous end-to-end configuration. During the subsequent relaxation, we have already seen
that the stress and birefringence of the FENE-PM, FENE and FENE-P all follow a single
master curve for large values of Wi. This curve is a unique function of the instantaneous
configuration of the chain and is given by the quasi-static nonlinear connector force law; i.e.

tp
11−tp

22

b
=
� 1

1−D%/(N−1)
n D%

N−1
(9)

We now turn to a discussion of the scaling of the FENE data. First we consider the relaxation
portion of the curve. The steady-state value of the stress and birefringence both scale as b for
large Wi. We have already shown that the initial stress decay-rate for the FENE is independent
of b, cf. Eq. (7). Making the same assumptions as were used to derive Eq. (7), it can easily be
shown that the initial decay of the steady-state birefringence for the FENE model is dD%/d(t/
lH)= −bWiFENE. Thus the initial rate of change of the scaled birefringence D%/b will be
independent of b. Furthermore, the distribution of dumbbell lengths at steady-state is narrow
and will remain narrow during the initial relaxation after flow is stopped because velocity of the
dumbbell beads, and hence the trajectory, is dominated by the contribution from the spring
force. What is most intriguing is the collapse of the data on the upper branch of the loop for
various values of b during the onset of uniaxial elongation at each value of Wi. Since, at the
inception of flow, the stress and birefringence are co-linear, the collapse of the data suggests a
similarity in the stress and birefringence rates of change, but we are unable to derive any simple
scalings for these without using preaveraging which will eliminate the hysteresis.

We also observe hysteresis in the stress versus birefringence for the bead-rod chain. In Fig.
13(b) we plot the scaled stress (divided by N−1) versus scaled birefringence (divided by N−1.
For comparison, we also show the data for a FENE dumbbell with b=150 at WiFENE=10.65.
In scaling the FENE dumbbell results in Fig. 13(b) we have again used the relationship b=3N
The bead-rod chain simulations qualitatively show the same trend in the hysteresis as found for
the FENE model in Fig. 13(a). The bead-rod data collapse onto a single curve for N=
50, 100, 200 at Wi=10.65. The collapse of the data during relaxation follows directly from the
universal stress and birefringence relaxation in Figs. 4 and 5. The extent of the hysteresis for
bead-rod chains at Wi=10.65 is qualitatively and quantitatively similar to that predicted for the
FENE dumbbell. The hysteresis is smaller at Wi=3.55 and the relaxation branch of the loop
follows the relaxation from Wi=10.65. The small difference initially in the Wi=3.55 and
Wi=10.65 relaxation curves is due to the difference in the relaxation of the birefringence which
will decrease with increasing N, cf. Fig. 5.

We now turn to a discussion of the numerical and physical origins of the stress-birefringence
hysteresis. Hysteresis occurs in the FENE model because the distribution of dumbbell lengths
during the start-up of extensional flow is very broad [27]. As time increases, dumbbells begin to
accumulate near the maximum extension, but the distribution has a large shoulder which spans
most dumbbell lengths [27]. This distribution is not well-approximated as a Gaussian [27]. The
dumbbells near maximum extension become the dominant contributors to the stress due to the
highly nonlinear restoring force whereas the birefringence has contributions that scale linearly
with the length of each dumbbell. At steady-state the distribution is nearly a d function and
(during relaxation from steady state) is well approximated as a Gaussian. Thus for a given
average birefringence, or dumbbell stretch, the stress can be larger during start-up than
relaxation because of the aforementioned skewed distribution function.
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Fig. 14. Sample chain configurations for N=200 during start-up of extensional flow at Wi=10.65 and relaxation.
During start-up the chain goes from: Coil�Backloops�Yo-Yo�Rod. The relaxation proceeds as: Rod�Stem+
Flower�Coil.

The previous argument also applies to the bead-rod chain, but there is another important
aspect to the bead-rod chain hysteresis not present in the FENE dumbbell, namely configuration
hysteresis. In Fig. 14 we show sample chain configurations for a chain during the start-up of
extensional flow at Wi=10.65 with N=200 and during the relaxation. During start-up the
chain first forms a series of backloops [33], then as the backloops unfold the chain resembles the
Yo-Yo model of Ryskin [34] with a taut, highly extended midsection bounded by backloops at
the ends. Ultimately the chain is stretched almost completely straight like a rod. During
relaxation the chain initially develops modulations along the entire backbone and further
relaxation occurs from the ends inward-similar to the flower + stem model of Brochard-Wyart
and Buguin [29]. Eventually (after many relaxation times) the chain returns to a coiled state. We
have visually examined the start-up and relaxation of several chains and found similar trends in
configurations. The typical configurations of the chain during the start-up of flow and the
relaxation are very different. Furthermore, the average deformation of the chain in the Yo-Yo
and the stem + flower configurations is similar, and so is the birefringence, but the stress is
larger for the Yo-Yo configuration due to the low configurational entropy of the taut midsection
of the chain.

5. Comparison to experimental data

Recently Spiegelberg and McKinley [1] and Orr and Sridhar [2] have measured extensional
polymer stresses for both the start-up and subsequent relaxation after flow stops using the
filament stretching rheometer. While we cannot simulate large enough bead-rod chains to
compare directly to the start-up and relaxation, we can compare their results to the universal
relaxation curve, Fig. 4, for the bead rod chains. Before we can compare the experiments to the
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simulations we need to calculate values for N, npkT and l1. We follow the same method as
Doyle and Shaqfeh [7] and Spiegelberg and McKinley [1], namely we define

b=3N=
6Mw sin2[tan−1(
2)]

C�M0
, (10)

npkT=hp/(2.369…l1), (11)

where Mw is the polymer molecular weight, C� is the characteristic number of monomer units
in a Kuhn step, M0 is the monomer molecular weight and 2 tan−1(
2)=109.5° is the
tetrahedral bond angle. Eq. (11) is based on the assumption that the polymer has a Zimm
spectrum [21]. In Ref. [7] Doyle and Shaqfeh calculated npkT=1.53 Pa and b=8665 for the
polystyrene-based Boger fluid of Spiegelberg and McKinley [1] giving N=2888. Furthermore
Spiegelberg and McKinley [1] report a relaxation time of l1=2.9 s based on the polymer stress
relaxation after shear flow. The fluid used by Orr and Sridhar [2] is a PIB-based Boger fluid,
Fluid A with Mw=1.2×106 g mol−1. Tirtaatmadja and Sridhar [35] fit the steady-state shear
viscosity for the same Fluid A to a single mode Oldroyd-B model and obtained a characteristic
polymer relaxation time l1=1.1 s, a polymer contribution to the viscosity, hp=7.81 Pa s and
solvent viscosity, h s=11.22 Pa s (the previous time and viscosities are shifted values [2] for
21.5°C, the operating temperature of Ref. [2]). Substituting the polymer viscosity into Eq. (11)
gives npkT=3.0 Pa. For PIB M0=56 g mol−1, C�=6.7 which substituting into Eq. (10) gives
N=4270.

In Fig. 15 we have compared the experimental data for the polystyrene Boger fluid and the
PIB Boger fluid to the universal stress relaxation curve for bead-rod chains. The time in the
experimental data has been shifted, by an additive term, such that the first point lies on the
bead-rod chain curve. The data of Orr and Sridhar falls slightly above the bead-rod chain curve
and is in fairly good agreement. The data of Spiegelberg and McKinley fall below the bead-rod
chain curve and are qualitatively similar to the bead-rod chain curve and the data of Orr and
Sridhar, i.e. a fast initial stress decay followed by a slower decay. Both sets of experimental data
are for finite strains and the data of Orr and Sridhar is for the largest strains. The universal
bead-rod chain curve is strictly valid for relaxation from steady-state and thus we expect to see
better agreement with the experimental data as the strain increases. What is interesting is that
the data lie on the bead-rod curve in a region in which the rate of relaxation is highly nonlinear.

Furthermore, in Eq. (4) we showed that the steady state extensional stress difference scaled
with (N−1)npkT is equal to 5.87Wi−2 for large Wi. For Wi=3.3 and Wi=2.31 the stress
calculated from Eq. (4) is equal to 17.4(N−1)npkT and 11.6(N−1)npkT, respectively. This is in
good agreement with the PIB data in which the initial stress is equal to and 20.1(N−1)npkT and
11.2(N−1)npkT at Wi=3.3 and Wi=2.31, respectively. Eq. (4) predicts a larger initial stress at
Wi=2.84, 9.45, 10.8 than observed for the polystyrene data at the corresponding Wi. We expect
the experimental polystyrene stress to be smaller than that calculated from Eq. (4) because the
data is for moderate strains and would be expected to increase at larger strains. We note that
the magnitude of the polymer stresses in Fig. 15 is much smaller than the O(N3npkT) value
calculated for a completely straight bead-rod chain [5,4], but is 3 orders of magnitude larger
than the stress associated with the polymer zero shear viscosity.
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To compare to the full start-up and relaxation we must resort to simpler elastic dumbbell
models. In Fig. 16(a) we compare the start-up of extensional flow and relaxation for the
polystyrene-based Boger fluid [8] to the FENE-PM-Zimm model and a FENE dumbbell at
Wi=2.84. The small dashed lines show the continuation of the elastic dumbbell models to
steady-state. The stress in the models has been made dimensional with npkT=1.53 Pa and the
FENE parameter was chosen such that b×M=3N, where M=1 for the FENE model and 10
for the FENE-PM-Zimm. Previously, Doyle and Shaqfeh [7] demonstrated that the FENE
dumbbell will underestimate the stress at small strains because it is a single mode model while
the multimode FENE-PM-Zimm is in very good agreement with the experimental data. At large
strains both models underpredict the polymer stress. After the flow is stopped, at a strain of
4.47, the models relax almost as a single exponential while the experimental data decay much
more rapidly. At long times the polystyrene data and the models are in better agreement. It is
clear though that the models and the data have different relaxation rates at long times. This then
implies that the polystyrene shear stress and extensional stress have differing relaxation rates at
long times (this follows from the fact that we have made time dimensionless with the shear stress
relaxation time). This disparity could be partly due to gravitational forces becoming important

Fig. 15. Polymer stress made dimensionless with npkT and divided by (N−1) versus time scaled by the longest
relaxation time. The solid line is the results for the initially straight bead-rod chains and the experimental results are
the symbols. The time of the experiments has been shifted (by an additive term) such that the initial stress lies on the
bead-rod chain universal curve. The experiments results are from Orr and Sridhar [2] and Spiegelberg and McKinley
[1].
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Fig. 16. Start-up and relaxation of the extensional polymer stress versus strain for a polystyrene Boger fluid from [8]
and several dumbbell models at Wi=2.84. The thin dashed lines (for the dumbbell models) show the continuation
of the stress to steady-state. The stress for the models has been made dimensional with npkT=1.54 Pa.

and drainage effects in the filament stretching device rheometer at long times (strains of 7–8).
Also shown in Fig. 16 are the results for the FENE and FENE-PM-Zimm models in which the
flow has not been stopped. At large strains both models approach a stress which is comparable
to the polystyrene stress at a strain of 4.47, before the flow is stopped.

In Fig. 16(b) we compare the same experimental polystyrene data to a conformation
dependent FENE model, FENE-CD, with zmax/z0=4 and 8. The FENE-CD with zmax/z0=8 is
in good agreement with the data for strains larger than 2 and up until the flow stops. When the
flow stops, the FENE-CD models show a rapid decay in the stress, but this fast decay does not
persist and gives rise to a much slower decay rate. The disparity in the polystyrene data and the
elastic dumbbell models at strains of 5–7 cannot be attributed to drainage or gravitational
effects.

In Fig. 17(a,b) we compare the birefringence divided by the stress-optic coefficient for the
elastic models and experimental results for the polystyrene Boger fluid [8]. The birefringence of
the polystyrene Boger fluid was also measured in the filament stretching rheometer, but the
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experiment was operated in a plateau tank filled with a density matched fluid to reduce the
effects of gravity as described in detail elsewhere [1]. The dimensionless stress-optic coefficient
for all the dumbbell models is C=1/5 [7,24]. Thus for the dumbbell models in Fig. 17 we have
divided the dimensionless birefringence by 1/5 and multiplied by npkT=1.53 Pa. For the
polystyrene data we used a value C= −5×10−9 Pa−1 based on values reported in the
literature for polystyrene in aromatic solvents [36–39]. The theoretical value of the stress-optic
coefficient is [24,15]

C=
2p

45kT
(n2+2)2

n
(a1−a2).

For polystyrene, n=1.6, (a1−a2)= −145×10−25 cm3 [40] giving C= −6.4×10−9 Pa−1. For
small strains all the models predict larger values for the birefringence than observed experimen-
tally, but there is also significant scatter in the data at small strains (eB2) related to the inherent
resolution limit of the experiments. At larger strains the models slightly overpredict the
birefringence. There is not a large difference in the FENE-CD and the FENE models during the
start-up, cf. Fig. 17(a–b). In Fig. 17(a) the FENE-PM-Zimm and FENE birefringence relax very

Fig. 17. Start-up and relaxation of the extensional birefringence divided by the stress optic coefficient versus strain for
a polystyrene Boger fluid from [8] and several dumbbell models at Wi=2.84. The thin dashed lines (for the dumbbell
models) show the continuation of the birefringence to steady-state.
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Fig. 18. Stress versus birefringence for the start-up of extensional flow and subsequent relaxation for a polystyrene
based Boger fluid from [8] and the conformation dependent FENE model at Wi=2.84. During start-up the data
proceed along the left side of the hysteresis loop and during relaxation the data follows the right hand side of the
loop.

similarly and are in good agreement with the birefringence data whereas the conformation
dependent FENE birefringence in Fig. 17(b) releases significantly slower than the experimental
data. The polystyrene birefringence relaxation can be well described by a single exponential
decay with a characteristic time of approximately 3 s, in agreement with the shear stress decay
rate. This is a better agreement than was found for the stress and is most probably due to the
fact that the birefringence experiments were performed under conditions which minimize the
effects of gravity.

In Fig. 18 we plot the stress versus birefringence for the polystyrene solution in Figs. 16 and
17 and the conformation dependent FENE. In Fig. 18 during start-up of flow the data follow
the left hand side of the loops and relax down the right hand side. There is a hysteresis in the
stress versus birefringence for the experimental data which is qualitatively captured by the
dumbbell models and is similar to the hysteresis found for the bead-rod chains, cf. Fig. 13(b).
We note that the largest hysteresis occurs when the stress and the birefringence are largest,
corresponding to strains of 4–5 in Figs. 16 and 17 and thus within the regime in which errors
due to gravity (stress) or baseline fluctuations due to small signals (birefringence) can be
neglected. Thus the experiments confirm that there are multiple values for the stress at a given
birefringence in extensional flows. Furthermore, the stress at a given value of the birefringence
is larger during the start-up of flow than during the relaxation. We believe the physical reasons
for this behavior are the same as found for the FENE and bead-rod chain models, namely the
second moment of the distribution (or some similar scalar measure of the distribution) does not
contain sufficient information to determine the polymeric stress and will underestimate the stress
for strong flows. Additionally, in the more realistic bead-rod chain model, there is a configura-
tional hysteresis in the conformation of the molecule that is not captured by a quasi-static
estimate of the entropy associated with a specified end-to-end length.
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Fig. 19. Total extensional stress (polymer and solvent) versus strain during start-up and relaxation. The data of Orr
and Sridhar [2] for Fluid A at (a) Wi=2.31 (e; =2.1 s) and (b) Wi=3.3 (e; =3 s) is compared to a conformation
dependent FENE dumbbell with b=12 800 and zmax/z0=2.

There are several factors which can contribute to the observed quantitative differences in the
birefringence and stress for the experiments and elastic dumbbell models. First, in our compari-
son of the elastic dumbbell models to the bead-rod model we found that a multimode model
describes the bead-rod chain data well at small strains while a single mode FENE model does
well at large strains. Both the multimode FENE-PM and FENE models underpredict the
relaxation rates of the bead-rod chains at intermediate strains. Secondly, we have incorporated
the effects of hydrodynamic interactions into a FENE-CD model in a somewhat simplistic
manner, though with physically reasonable parameters for the ratio of the maximum drag to the
equilibrium (small deformation) drag, zmax/z0. At intermediate degrees of chain stretch the
relation between the chain stretch and the drag coefficient may not scale linearly with the chain
stretch. Furthermore, the hysteresis in the chain configurations observed for the bead-rod chains
during start-up and relaxation should also result in a hysteresis in the drag coefficient versus the
average end-to-end distance of the chain.
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Orr and Sridhar [2] have also measured extensional polymer solution stresses during the
start-up and relaxation of extensional flow for PIB-based Boger fluids. The relaxation of the
experimental stresses was already compared to the universal bead-rod chain relaxation curve in
Fig. 15 and we compare the full start-up and relaxation to a FENE-CD in Fig. 19(a,b).
Following the discussion earlier in this section, we set npkT=3 Pa to make the FENE-CD stress
dimensional and base the WiFENE-CD on a relaxation time of l1=1.1 s. The solvent stress is
taken to be 3 times the low Wi shear value, i.e. (11.22 Pa s [2]) multiplied by the extension rate.
Since we do not know the initial aspect ratio of the sample we have not subtracted off the
solvent stress in Fig. 19. A value of the drag ratio zmax/z0=2 in the FENE-CD model was found
to give the best fit to the experimental data. This ratio is smaller than the upper bound
calculated from Eq. (2), zmax/z0=7.9 (using L= (b/3)×1.54 nm, L/R=
b/3, d=0.5 nm). The
FENE-CD is in very good agreement with the experimental data beyond a strain e]1 during
start-up of the flow. At smaller strains (e51) the flow in the filament stretching rheometer is not
purely uniaxial extension [41]. Additionally, the FENE-CD is a single mode model and thus will
underpredict the polymer stress at small strains. After the flow is stopped, the FENE-CD model
stress relaxes slower than the PIB data, but the difference between the simulation and the
experimental data is not as large as was found for the polystyrene data in Fig. 16. The
FENE-CD is in best agreement with the PIB data at the larger Wi, Wi=3.3, and at large
strains. Overall the agreement between the simulations and the experimental data is quite good
considering we have only varied one parameter, zmax/z0, and even this variation was bound by
the value given by Eq. (2). All the other parameters in the elastic models have been chosen based
on the molecular architecture of the polymer and the reported rheological properties.

6. Summary

We have investigated the relaxation of polymer chains following extensional flow. A universal
relaxation curve for the stress decay from steady-state was found by shifting the results to lie on
the curve described by the relaxation of an initially straight chain. For relaxation from
steady-state the bead-rod chain, FENE dumbbell, FENE-P dumbbell and FENE-PM model
demonstrate that the initial stress decays with an O(Wi2) rate. The universal stress relaxation
curve compares favorably to experimental data for relaxation of polystyrene [1] and poly-
isobutylene Boger fluids [2] following extensional flow.

We have also shown that there is not a simple one-to-one relation in the stress and
birefringence for the bead-rod model in extensional flow. Thus there is hysteresis in comparing
the stress versus birefringence during the start-up of flow and subsequent relaxation. We have
also shown that the FENE model shows very similar hysteresis while the FENE-PM model does
not due to the preaveraging of the nonlinear terms. The bead-rod model also displays a
configuration hysteresis which contributes to the stress-birefringence hysteresis. The hysteresis in
the models is in qualitative agreement with recent experimental data [8]. These findings
demonstrate the importance of pursuing numerical techniques such as CONNFFESSIT [42–44]
and Brownian configuration fields [44,45] which do not preaverage nonlinear terms in constitu-
tive equations.
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Appendix A

In the test we have presented numerical simulations and scaling arguments which support the
existence of a stress relaxation master curve following cessation of a homogeneous uniaxial
elongational flow. Similar master curve characteristics are exhibited by bead-rod and bead-
spring models, e.g. the FENE-PM chain and the FENE dumbbell (without the Peterlin
approximation). It has been noted elsewhere [46] that the FENE-P dumbbell model also predicts
a master curve that can be computed analytically. In this appendix we show how the general
form for a number of the numerical results presented in this paper can also be obtained
analytically from the FENE-P dumbbell constitutive equations.The evolution equation for the
FENE-P dumbbell model in dimensionless form is

A(1)= − [ f(trA)A−I] (12)

where the subscript (1) indicates the upper-convected derivative and time has been nondimen-
sionalized with the characteristic relaxation time lH. The Weissenberg number is lHe; . We
nondimensionalize in a manner consistent with the discussion in Section 2.2 in the text, and thus
the second moment of the dumbbell configuration A=�QQ� is made dimensionless with
(N−1)a2/3 and f(trA)= [1− tr(A)/b ]−1. Moreover, the dimensionless extensibility parameter is
related to the number of Kuhn steps in a bead rod chain via the expression, b=3(N−1):
3N.The polymeric contribution to the stress is given by either the Kramers or Giesekus
relationships

tp= f(trA)A−I=A(1) (13)

where stress is made dimensionless with npkT.
In transient uniaxial elongation, Eq. (12) can be written as two coupled nonlinear ordinary

differential equations

dA+

dt. =2WiA− − fA+ +3, (14)

dA−

dt. =Wi(A+ +3)− fA−, (15)

where A+ =A11+2A22, A− =A11−A22, t. = t/lH, and f=b/(b−A+). Note in this context that
1 refers the coordinate along the principle axis of extension of the uniaxial elongational flow and
2 is any coordinate perpendicular to the 1 direction.

Asymptotic steady-state values for Wi\1/2 and b�1 of the FENE connector and the stress
difference are given by f�2Wi and A−�b [(1−3/b)−1/(2Wi)]. The steady-state stress differ-
ence then becomes
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tp
11−tp

22=Dtp= (2Wi)b [(1−3/b)−1/(2Wi)]. (16)

Since the longest relaxation time scales as l:N2 for a Rouse (or bead-rod) chain, the initial
stress therefore varies as Dtp:N3 as is also found for bead-rod chains.

Following cessation of uniaxial elongation from a steady state configuration at large final
Hencky strains ef=e; tf�1, Eqs. (14) and (15) can be simplified by setting Wi=0, and are then
decoupled from each other. Implicit transcendental expressions for A+(t) and A−(t) can be
obtained by direct integration, and simpler explicit expressions can also be obtained for short
times and long times following cessation of elongation. For short times (t− tf)/lH�1, the
dimensionless stress difference can be expressed in the form

tp
11−tp

22

b
=

[(1−3/b)(2Wi)−1 exp[(2Wi)−1]] exp(−
2G)


2G
, (17)

where the dimensionless ‘reduced time’ G is given by

G=
t− tf

lH

+aWi=
t− tf

lH

+
1

8(Wi)2 (18)

The polymeric stress (scaled with npkTb=3npkT(N−1)) therefore follows a single relaxation
master curve if the physical elapsed time t− tf is shifted by an additive shift factor aWi given by
Eq. (18). This additive shift factor therefore scales as (Wi)−2 as also found for bead-rod chains
and FENE dumbbells.

The dimensionless birefringence D% predicted by a FENE-P dumbbell model is simply given by
the expression, D=A−(t). This follows since the configuration probability distribution function
remains Gaussian at all times [47]. The scaled birefringence at short times (t− tf)/lH�1 is
therefore given by

D
(N−1)

=3[1−3/b− (Wi)−1] exp[(2Wi)−1] exp(−
2G), (19)

And relaxes more slowly than the polymeric stress in agreement with the calculations
presented in Fig. 3.At long times (t− tf)/lH�1 the stress becomes

tp
11−tp

22

b
= (1− feq/(2Wi)) exp[1− feq/(2Wi)] exp[− (t− tf)/lH ], (20)

where feq= (1+3/b) is the equilibrium value of the FENE connector. At long times, the
polymeric stress therefore follows a simple decaying exponential in time that is a factor of
(2Wi) exp[1− (2Wi)−1] lower than that predicted by stress relaxation for the linear Oldroyd-B
model.

In order to extend a FENE-P dumbbell to full extension, an infinite Weissenberg number is
required; however, for all finite Wi, the initial value of the stress and its evolution at short times
follows a power-law similar to those shown in Fig. 5. At large Wi and for very short times, the
exponential terms in Eq. (17) can be neglected and the stress difference then relaxes as

tp
11−tp

22

N−1
=

3


2
G−1/2, (21)
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from an initial value given by Eq. (16) at an initial reduced time of 1/[8(Wi)2]. The numerical
value 3/
2:2.12 in Eq. (21) is comparable to the value of 1.67 found from the bead-rod
calculations and the value of 1.49 reported by Grassis and Hinch.Finally, Eq. (17) can be used
to obtain an estimate for the time-scale denoted l50% at which the stress has fallen to 50% of the
initial plateau value. Using the result from Eq. (16) as the initial plateau value and upon
substituting half this value into Eq. (17), we find that, for Wi\0.5,

l50%

lH

=
1
2
(1+Wi exp(−1/2Wi))−2−

1
8Wi2

(22)

which for Wi�1 can be simplified to

l50%

lH

=
3

8Wi2
(23)

This prediction for l50% is shown in Fig. 6 by the dashed line.
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