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ABSTRACT: We study the size distribution of spontaneous
knots on semiflexible chains confined in square cross-section
channels using Monte Carlo simulations. The most probable
knot size, i.e. the metastable knot size, is found to vary
nonmonotonically with the channel size. In the case of weak
confinement, the metastable knot size is larger than the knot
size in bulk because the segments within the knot feel less
channel confinement than the segments outside the knot, and
the channel pushes the segments into knot cores to reduce the
overall free energy. Conversely, in the case of strong
confinement, the metastable knot size is smaller than the one in bulk because the segments within the knot experience more
channel confinement, and the channel expels segments from the knot core. We demonstrate that a simple theory can capture this
nonmonotonic behavior and quantitatively explain the metastable knot size as a function of the channel size. These results may
have implications for tuning the channel size to either generate or screen knots.

1. INTRODUCTION
Long linear polymers both tie and untie “knots” through the
random motions of the chain.1 These types of knots have been
shown to affect the mechanical,2,3 rheological,4,5 and structural
properties of polymer molecules. In biological contexts, knots
have been found in proteins6 and viral capsid DNA.7

Experiments and simulations have begun to address the
structure of a knot along a polymer in a good solventsome
experiments8 and simulations9 have suggested the localization
of a knot whereas other simulations have suggested the
opposite.10,11 For semiflexible polymers like DNA, Grosberg
and Rabin posited that a competition between bending and
confinement energies within a knotted region of the chain
results in a localized, metastable knot for long, thin polymers.12

The metastable knot corresponds to a local minimum in the
free energy landscape with respect to the knot size. In a recent
publication, we validated the existence of metastable knots in
semiflexible chains with computer simulations and extended the
Grosberg−Rabin (GR) theory to incorporate the effect of a
finite chain width.13 We also investigated the existence of
metastable knots in flexible chains, i.e., in the absence of
bending energy.14

Advances in microfabrication have spurred fundamental
experimental research into the static and dynamic properties
of double-stranded DNA (dsDNA) in microfluidic confine-
ment.15,16 Computer simulations have systematically inves-
tigated the scaling regimes of a confined polymer,17−21 and
experiments have added support to these arguments for both
static and dynamic properties.22−27 More recently, the
topological properties of polymers in confinement have been
investigated. Simulation results have indicated that the

probability of forming a knot can depend nonmonotonically
on the degree of confinement in slits28,29 or channels.30,31 The
most direct experimental measurements of knot sizes have been
on actin32 and DNA33 held under tension by optical tweezers.
Knotted DNA molecules have been observed in nano-
channels,34 and confinement could provide a passive means
of visualizing the size of knots in polymers. Beyond these
fundamental studies, nanochannels have been used to extend
dsDNA for the optical mapping of genomes,35−37 and knots
may have been observed to interfere with this process by
reducing apparent separation between sites.38

In the current study, we analyze how confining a knotted
polymer in a channel may affect the size of the knot. Previous
studies have observed a nonmonotonic trend in knot size upon
increasing confinement.29,30 Here, we investigate the physical
mechanism behind these observations with both simulations
and theory. We modify the GR theory to incorporate the effect
of confinement in a channel, leading to a theory for the size
distribution of knots along chains confined in channels. This
modified theory predicts a nonmonotonic variation of the knot
size with the confining dimension. We tested this theory with
detailed Monte Carlo simulations to sample trefoil knot
configurations along chains confined within channels. Our
results demonstrate the modified GR theory quantitatively
agrees with the metastable knot size from simulations, and we
provide predictions for the sizes of channels where the theory
can be tested with dsDNA experiments.
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2. THEORY AND SIMULATION
2.1. Theory for the Metastable Knots. Let us first recall

the modified GR theory for semiflexible polymers with finite
thickness in bulk (no confinement). The free energy cost of
knot formation in bulk follows
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where Lknot is the contour length in the knot, Lp is the
persistence length, and w is the chain width. The numerical
coefficients k1 = 17.06, k2 = 1.86, and p = 16 were determined
for trefoil knots in the previous study.13 The first term
represents the bending energy due to the increased curvature of
the contour within the knot, and the second term corresponds
to the confinement free energy within the knot resulting from
topological constraints. Note that eq 1 only contains terms
involving Lknot because our primary purpose is to calculate the
size distribution of knots from the free energy.
For semiflexible chains in square channels, the free energy

cost of knot formation using the diagram of states, illustrated in
Figure 1a, is approximated as
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where Fknot
wall(Lknot) corresponds to the free energy cost of

confining a knot while the contour length of the knot is
maintained as Lknot and Funknot

wall (Lknot) corresponds to the
confinement free energy of an unknotted chain with contour
length Lknot. Note that in the definition of Fknot

wall(Lknot) we ignore
the confinement free energy experienced by the unknotted
portion (L − Lknot) in a knotted chain because this contribution
would cancel with an identical term in Funknot

wall . It is also worth
pointing out that writing the free energy as in eq 2, we make
the approximation that the free energies of knotted and

unknotted portions do not affect each other. In the real case,
the knotted and unknotted subchains may penetrate each other,
which could modify the free energy. For simplicity, such effects
are not included. For convenience, we define an excess free
energy

≡ −F L F L F L( ) ( ) ( )excess knot knot
wall

knot unknot
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Equation 2 then becomes

= +F F Fknot
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Rewriting eq 2 in this way enables a simple physical
interpretation of how the confining geometry interacts with
the knotted subchain. When the knotted region of the chain
experiences more confinement free energy due to the channel
walls than the unknotted region of the chain, i.e. Fexcess > 0,
forming a knot is more difficult inside the channels than in
bulk, and the formation of the knot becomes less likely.
Conversely, in situations where the unknotted region of the
chain experiences more confinement free energy due to the
walls than the knotted region of the chain, i.e. Fexcess > 0,
forming a knot becomes more likely within the confining
geometry.
Now, we turn to calculate Fexcess. The term Funknot

wall (Lknot) can
be approximated as the confinement free energy of equilibrium
chains in channels Fchain(Lknot), which is ensemble-average of
knotted and unknotted chains. This approximation is based on
the fact that knots usually occur in small portions of a long
chain. The functional form of Fchain(Lknot) depends on the
strength of confinement. For certain regimes, scaling
expressions exist for this term. For example, in the tightly
confined Odijk regime (D≪ Lp), the chain periodically deflects
off the confining walls, leading to an expression with the same
form as the second term in eq 1. In the de Gennes regime (Lp
≪ D ≪ Rbulk), where Rbulk is the radius of gyration of the chain
in bulk, the chain partitions itself into a series of self-avoiding
blobs of size D. In the current study, we mainly deal with
confining channels in the de Gennes regime Lp ≪ D ≪ Rbulk,
leading to

= −F L D w L L( ) 5.0unknot
wall

knot p knot
5/3 1/3 1/3

(5)

where the prefactor 5.0 was determined in a previous study.17

As the strength of confinement crosses over to the Odijk
regime (D ≪ Lp), eq 5 starts to underestimate the confinement
free energy.17

The term Fknot
wall(Lknot) depends on the size of the knot relative

to that of the channel. When the knot size is much smaller than
the channel size, referred to as the “small” knot regime, the
knot is weakly deformed and can be considered as a ball with an
effective diameter bknot. The term bknot is approximately
proportional to Lknot, so we write bknot = αLknot, where α is a
numerical coefficient less than 1. The confinement free energy
of this ball is approximated as the one for a bead on a flexible
chain of identical balls.39 Then, we have Fknot

wall(Lknot) ≈ bknot
5/3(D

− bknot)
−5/3. In the expression, (D − bknot)

−5/3 is used in favor of
D−5/3 because the center of the knot-ball is restricted in a
channel of size (D − bknot) due to the finite thickness of the ball.
After introducing a numerical coefficient β, we obtain

β α= − −F L L D L( ) ( )knot
wall

knot knot knot
5/3 5/3

(6)

When the knot size is much larger than the channel size,
referred to as the “large” knot regime, we can consider the
different portions of the knot to be confined in many

Figure 1. (a) A diagram to show the free energy difference between
four states: an unknotted subchain in bulk, a knotted subchain in bulk,
an unknotted subchain in a channel, and a knotted subchain in a
channel. (b) Illustrations of small (top) and large (bottom) knots
confined in a channel.
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subchannels with channel size less than D, discussed by
Nakajima and Sakaue31 and shown in Figure 1b. In such a
situation, the contour within the knot experiences a larger
confinement free energy penalty than outside the knot.
In the current study, we will use eq 4 with eq 5 and eq 6 to

calculate the metastable knot size in channels because the
metastable knot size is usually located in the “small” knot
regime for the channel sizes in this study.
2.2. Polymer Model and Simulation Method. We

performed Monte Carlo simulations of polymers confined in
square cross-section channels to test the preceding theoretical
predictions. Polymer chains were modeled as a string of
touching beads. The diameter of each bead corresponds to the
effective chain width w, and the contour length L follows as L =
(N − 1)w, where N is the number of beads. The present model
contains only three interaction energies: pairwise hardcore
repulsion between beads, hardcore repulsions between the
beads and the channel walls, and a harmonic bending energy
Ebend(θ)/kBT = (1/2)(Lp/w)θ

2 used to reproduce the
persistence length Lp.
Configurations of chains were sampled with a standard

Monte Carlo procedure.18 Each Monte Carlo cycle consisted of
alternating crankshaft or reptation moves. For a given set of
parameters, we typically performed 1011 cycles and sampled the
chain configuration every 1000 cycles. For each parameter set,
the number of knotted chains was approximately 106 or 107,
resulting in knotting probabilities between 0.01 and 0.1 for our
simulation conditions.
Since the topology of an open chain is not well-defined, the

chains must be systematically “closed” in order to determine its
topology. In the current study, the closing loop is generated by
minimally interfering closure scheme.40 After closing the chain,
the topology of the chain is determined by calculating the
Alexander polynomial.41 Further details about the determi-
nation of knot size are presented in our previous publication.13

Note that the knots of open chains might be ambiguous when
the knot size is close to the entire chain. However, knots can be
easily distinguished from unknots, when the knot size is much
less than the entire chain. In the current study, the contour
lengths of metastable knots are usually 1 order of magnitude
less than the entire chain, and hence these knots are well-
defined.

3. RESULTS AND DISCUSSION
The probability distributions of trefoil knot sizes for semi-
flexible chains confined in channels of varying sizes as well as in
bulk are shown in Figure 2. The contour length is fixed as L =
400Lp, and the chain width is fixed as w = 0.4Lp. For each curve,
the probability f(x) is normalized such that ∫ 0

L/Lpf(x) dx = f total,
where x = Lknot/Lp and f total is the total probability of forming a
trefoil knot on the chain. For all channel sizes as well as the
bulk case, the probability distribution attains a maximum at
Lknot* , indicating a metastable knot. The shapes and magnitudes
of the probability distributions of knot size are markedly
influenced by confinement, and the metastable knot size Lknot*
depends on the channel size. We note that we focus the present
analysis on the metastable knot size Lknot* rather than the
average knot size ⟨Lknot⟩, the latter which has been the primary
quantity analyzed in other studies of knot size.29−31,42 For the
present study, examining Lknot* is preferable for two reasons: (i)
free energy arguments are more directly manipulated to give an
estimate of Lknot* , and (ii) Lknot* is relatively insensitive to the
contour length of the molecule while ⟨Lknot⟩ is strongly affected

by the contour length due to the long tail of the knot size
distribution (see Supporting Information).
The total probability of forming a trefoil knot as a function of

the channel size is shown in the inset of Figure 2. As the degree
of confinement is increased, f total increases from the bulk value
0.011 to the peak value 0.043 at D = 8Lp. A further reduction of
the channel size causes a sharp decrease in f total to zero. A
similar nonmonotonic behavior in knotting probability was also
observed in our previous study of circular chains in slits.28

The metastable knot size Lknot* also varies nonmonotonically
with D, shown in Figure 3. A similar trend has been observed in

the previous simulation of confined semiflexible chains.30 As D
decreases, Lknot* increases from the bulk value of 27.2Lp to the
peak value of 49.6Lp at D = 12Lp, decreasing rapidly thereafter.
The metastable knot sizes shown here are much less than the
contour length of the chain L = 400Lp; accordingly, the end
effects due to finite chain length are weak. To rule out the
possibility that the nonmonotonic change of Lknot* versus D is
caused by entering the weak confinement regime, we identified
the de Gennes regime as 4 ≤ D/Lp ≤ 20 by analyzing the

Figure 2. Probability distributions of the sizes of trefoil knots for
different confining channel widths, D. For all curves, the contour
length is fixed as L = 400Lp, and the chain width is fixed as w = 0.4Lp.
The inset shows the total probability of trefoil knots as a function of
channel size. The dashed line in the inset shows the probability of
trefoil knots in bulk.

Figure 3. Most probable size of a trefoil knot as a function of the
channel size. The solid line corresponds to the minimization of free
energy in eq 4 with respect to Lknot using numerical coefficients α = 0.1
and β = 0.02. The contour length is fixed as L = 400Lp, and the chain
width is fixed as w = 0.4Lp.
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confinement free energy of the chain (see Supporting
Information). The peak of Lknot* at D/Lp ≈ 12 is located well
inside the de Gennes regime, so a transition in the effective
confinement regimes is not responsible for the nonmonotonic
change of Lknot* versus D.
The standard deviation of knot size, σknot, as a function of the

channel size is shown in Figure 4. Fluctuations in the size of the

knots monotonically decrease as the channel size is decreased.
This result directly reflects the tightening of the distributions of
knot sizes shown in Figure 2. In other words, confinement acts
to stabilize and more sharply localize the knot on a chain. The
data in Figure 4 agree qualitatively with experimental
observation of small fluctuations in knot size during the
diffusion and escape of a knot along a DNA molecule confined
in a channel.34

The average deformation ratio of trefoil knots as a function
of the channel size is shown in Figure 5a. The deformation ratio
is calculated as 2⟨Rx⟩/(⟨Ry⟩ + ⟨Rz⟩), where ⟨Rx⟩, ⟨Ry⟩, and ⟨Rz⟩
are the radii of gyration in each direction. The x-axis
corresponds to the axis of the channel. In the absence of
confinement, knots are isotropic, and the average deformation

ratio is one. Even in weak confinement, noticeable anisotropy is
present in the knotted regions. This result may occur due to
deformation of knots located near the channel walls. The
deformation ratio increases monotonically as the channel size
decreases. When D ≤ 6Lp, the average deformation ratio
increases more sharply. The extensions of knots along the
direction of the channel axis are shown in Figure 5b. The
extension is defined as the maximum span of the knot projected
in the direction of the channel axis. We plot the most probable
value of extension L∥* rather than the mean value of extension
⟨L∥⟩ because L∥* is insensitive the contour length of the chain.
The most probable value of extension of the knot is smaller
than the channel size for D > 4Lp.
Next, we compare the metastable knot size in simulations

with the theoretical prediction from eq 1, shown by the black
curve in Figure 3a. By choosing numerical coefficients α = 0.1
and β = 0.02, our theory is able to quantitatively reproduce the
dependence of Lknot* on D, shown in Figure 3. The fitted value
of α = 0.1 suggests that the effective diameter of knot-ball, bknot,
is roughly 0.1Lknot, which is reasonable. After substituting bknot =
0.1Lknot into eq 6 with β = 0.02, we have Fknot

wall = 0.93bknot
5/3(D −

bknot)
−5/3, where the prefactor 0.93 is close to unity.

In our theory, the metastable knot size is determined by the
minimum of Fknot

wall(Lknot) and Fexcess(Lknot) for a given channel
size. To further examine our theory, we compare Fknot

bulk and Fexcess
calculated from simulations and theory. The free energy of
knots in bulk Fknot

bulk as a function of knot size is shown in Figure
6a. The metastable knot size in bulk, Fknot

bulk*, predicted by eq 1 is

27.2Lp, slightly larger than 24.9Lp observed in the simulations.
Note that the calculation of Fknot

bulk(Lknot) by eq 1 is no longer
valid for very large knots because eq 1 is derived based on the
Odijk scaling for self-confinement free energy of knots in bulk,
and the Odijk scaling is only valid in strong confinement, i.e.,
the tight knots.12,13

Figure 4. Standard deviation of knot size as a function of the channel
size. The contour length is fixed as L = 400Lp, and the chain width is
fixed as w = 0.4Lp.

Figure 5. (a) Deformation ratio of knots as a function of the channel
size. The deformation ratio is calculated as 2⟨Rx⟩/(⟨Ry⟩ + ⟨Rz⟩), where
⟨Rx⟩, ⟨Ry⟩, and ⟨Rz⟩ are the radii of gyration in each direction. The x-
axis corresponds to the axis of the channel. (b) The most probable
extension of trefoil knot as a function of the channel size. The contour
length is fixed as L = 400Lp, and the chain width is fixed as w = 0.4Lp.

Figure 6. (a) Potential of mean force as a function of knot size for a
semiflexible chain in bulk. (b) Difference in confinement free energy,
Fexcess, between a knotted and unknotted subchain as a function of the
knot size calculated from simulation. (c) Fexcess calculated from theory.
The contour length is fixed as L = 400Lp, and the chain width is fixed
as w = 0.4Lp.
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The values of Fexcess extracted from simulations of knots are
shown in Figure 6b. The value of Fexcess is extracted using Fexcess
≡ Fknot

wall − Fnonknot
wall = Fknot

bulk − Fknot
channel = log( fchannel) − log( f bulk),

where fchannel and f bulk are the knotting probabilities as a function
of Lknot, shown in Figure 2. Recall that Fknot

wall − Fnonknot
wall = Fbulk

channel −
Fknot
channel is based on the diagram in Figure 1a. In addition,

applying Fknot
bulk = −log( f bulk) and Fknot

channel = −log( fchannel) is
accurate only when the probability of forming a trefoil knot is
small and the probabilities of other knots are negligible in
comparison. This requirement is satisfied since the probability
of forming a trefoil knot is small (<5%), and the probabilities of
other knots are always less than 1%.
The theoretical predictions of Fexcess calculated using eqs 4−6

with the fitted coefficients α = 0.1 and β = 0.02 (determined in
the fit of Lknot* in Figure 3) are shown in Figure 6c. Our theory
qualitatively captures three major features of Fexcess. First,
Fexcess(Lknot) exhibits a minimum. Second, the value of Lknot at
the minimum of Fexcess decreases with decreasing D. Third, the
potential well becomes deeper with decreasing D. Quantita-
tively, our theoretical predictions of Fexcess deviate from the ones
extracted from simulation, particularly for large Lknot. This
deviation is caused by two major assumptions in our theory: (i)
the knot core is treated as an isotropic ball, and (ii) the effective
diameter bknot of the ball is proportional to Lknot. The first
assumption is not valid for small channels because the knot is
significantly deformed as shown in Figure 5a. The second
assumption is not valid for large knots, as shown by data of
knot radius versus Lknot in the Supporting Information.
The insights from Figure 6 enable a deeper understanding of

the dependence of Lknot* on D in Figure 3. The metastable knot
size corresponds to the minimum of Fknot

channel = Fknot
bulk + Fexcess. The

location of the minimum in Fknot
bulk is independent of D (red line

Figure 3a). The value of Lknot which minimizes Fexcess becomes
smaller with the decreasing D (blue line Figure 3a). In wide
channels, the confinement effect is weak, Fknot

channel is dominated
by Fknot

bulk, and thus Lknot* is close to the minimum in the bulk value
Fknot
bulk*. In narrow channels, Fknot

channel is dominated by Fexcess, and
Lknot* approaches the minimum of Fexcess. In between these
extremes, the competition between Fknot

bulk and Fexcess causes the
nonmonotonic change in Lknot* . Interestingly, although our
theoretical predictions of Fknot

bulk and Fexcess in Figure 6 are not
precise, the prediction of Lknot* is significantly more accurate,
probably due to cancellation of errors. As shown by Figure 6a,
eq 1 overestimates the shrinking force −∂Fknotbulk/∂Lknot of knots
when the knot size is larger than the metastable knot size in
bulk. On the other hand, as shown by two y-axes in Figures 6b
and 6c, eq 3 overestimates the swelling forces −∂Fexcess/∂Lknot.
The physical reason why the shrinking a knot can reduce the

confinement free energy of the knot is that a subchain of Lknot is
compacted in the knotted region. For the knotted and
unknotted states, the confinement free energies scale as (D −
αLknot)

−5/3Lknot
5/3 and D−5/3w1/3Lp

1/3Lknot, respectively. The
ratio is Lknot

2/3/(w1/3Lp
1/3), if we approximate (D − αLknot) ≈

D. This ratio approaches zero as the knot size approaches zero.
In other words, when the knot is small, the segments inside the
knot experience less confinement from the channel walls than
the segments outside the knot. As the knot size increases,
Lknot

2/3/(w1/3Lp
1/3) eventually becomes larger than 1. This

means that when the knot is large, the segments inside the knot
experience more confinement from the channel walls than the
segments outside the core of the knot. Furthermore, as the knot
size increases, the term D/(D − αLknot) increases to an
infinitely large value, which corresponds to a large ball without

transitional freedom in the cross-section of the channel. The
knotted region, however, is a soft ball rather than a hard ball.
Thus, the entropy gained from deformability becomes the
dominant effect.
It is worth mentioning that we assume the knot core to be

undeformed from equilibrium in order to express the free
energy in two terms: Fknot

bulk(Lknot) in eq 1 and Fknot
wall(Lknot) in eq 6.

However, the confining channel will deform the knot core from
a spherical shape, and this deformation will affect both
Fknot
bulk(Lknot) and Fknot

wall(Lknot). As mentioned in the previous
paragraph, the deformation should provide more translational
freedom for the knot core in the transverse directions. This
deformation will affect Fknot

bulk(Lknot) due to the change in pa
parameter in eq 1 to describe the aspect ratio of the maximally
inflated virtual tube of a knot.13 Figure 5a shows that the
deformation ratio is always less than 2 for the tube diameters D
≥ 2Lp. For simplicity, the effects of deformation on Fknot

bulk(Lknot)
and Fknot

wall(Lknot) are not considered in the theoretical framework
of the current study.
The results in Figures 2−6 are for confined semiflexible

chains with the chain width w = 0.4Lp and contour length L =
400Lp. To investigate the effect of changes in chain width on
the agreement between simulation and theory, we performed
simulations for confined semiflexible chains with chain widths w
= 0.2Lp and w = 0.1Lp. The black circle in Figure 7 shows the

metastable knot size in the previous simulation study30 of a
confined chain with the parameters L = 96Lp, w = 0.05Lp, and D
= 2.4Lp. Our results are in reasonable agreement with previous
result. The metastable knot sizes for three different chain
widths are compared to our theoretical predictions in Figure 7.
Recall that our theory requires two numerical coefficients α and
β. For w = 0.4Lp, we use the coefficients α = 0.1 and β = 0.02 to
attain agreement between theory and simulation. For w = 0.2Lp
and w = 0.1Lp, we maintain α = 0.1 and change β to 0.03 in
order to match our theory to simulation results. The coefficient
α is used to relate the effective diameter of the knot, bknot, and
the contour length of the knot, Lknot. Our simulation results
show that the relationship between bknot versus Lknot is
insensitive to the chain width (see Supporting Information),
and thus the value of α is independent of the chain width. The
reason why we change β for different chain widths is as follows.
The theoretical equation for Fknot

bulk (eq 1) is fairly accurate for
thin chains (see Supporting Information and ref 13) but

Figure 7. Metastable knot size as a function of channel size for
different chain widths. The symbols and lines correspond to simulation
results and theoretical predictions, respectively. The contour lengths
are fixed as L = 400Lp. The black circle shows the previous simulation
result30 of a chain with L = 4.8 μm, Lp = 50 nm, and w = 2.5 nm
confined in a channel with size of D = 240 nm.
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significantly overestimates the force which shrinks a knot for
thick chains (Figure 6a). To compensate for this over-
estimation, we need to similarly overestimate the swelling
force due to Fexcess. Therefore, the value of β used in eq 6 is
larger for thinner chains.
Our theory is able to capture three major trends concerning

the dependence of Lknot* on w and D, shown in Figure 7. First, as
w decreases, the peak value decreases. Second, as w decreases,
the peak in Lknot* shifts to smaller channel sizes. Third, for all w,
the curves of Lknot versus D converge at very small channel sizes.

4. CONCLUSIONS
We have used computer simulations to show how confinement
in a channel may alter the sizes and probabilities of formation
of knots in polymer molecules. We put these simulation results
in context of a theory that explains the physics of the process:
the competition between bending energy within the knot and
confinement energy within the knot and due to the channel
walls determines the knot size. The metastable knot size in
weak confinement is larger than the one in bulk because the
segments in the knot core experience less confinement free
energy than the ones in the unknotted subchains. This result
means the channel acts to push segments into the knot to
reduce the total confinement free energy. On the other hand,
the metastable knot size in strong confinement is smaller than
the one in bulk because the segments in the knot core
experience more confinement free energy. Here, the channel
acts to expel segments from the core of the knot.
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