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ABSTRACT: Scaling regimes for polymers confined to
tubular channels are well established when the channel
cross-sectional dimension is either very small (Odjik regime)
or large (classic de Gennes regime) relative to the polymer
Kuhn length. However, experiments of confined polymers
using DNA as a model system are usually located in the
intermediate region between these two regimes. In the
literature, controversy exists regarding the existence of the
extended de Gennes regime in this intermediate region. Here
we use simulations and theory to reconcile conflicting theories
and confirm the existence of extended de Gennes regime. We
show that prior work did not support the notion of this regime
because of the use of a wrong confinement free energy. In a
broad sense, the extended de Gennes regime corresponds to the situation when excluded volume interaction is weaker than
thermal energy. Such a situation also occurs in many other cases, such as semidilute polymer solutions and polymers under
tension. This work should benefit the practical applications of nanochannels to stretch DNA, such as deepening the
understanding of the relationship between the chain extension and channel size and providing the scaling behaviors of recoiling
force for DNA at the entrance of nanochannels.

1. INTRODUCTION

The recent genomic applications of single DNA molecules in
micro/nanofluidic channels has stimulated interest in polymer
physics in confinement.1−3 The behavior of polymers in the
Odijk regime (D ≪ Lk) and the de Gennes regime (D ≫ Lk)
regimes is described by the classic deflection4 and blob5,6

models, respectively, where D is the channel size and Lk is the
Kuhn length of polymer. Unfortunately, the cross-sectional
dimensions of channels in DNA experiments are typically from
about Lk to several times Lk, which are located between the
well-established Odijk and de Gennes regimes.7−11 To
understand DNA behavior between these two classic regimes,
simulation12−16 and theoretical studies17−21 have been
performed. However, there is no consensus among researchers
regarding this important intermediate regime. Researchers have
proposed the existence of an extended de Gennes regime13,15,18

and hairpin regime.22 Recent work21 proposed that the
extended de Gennes regime does not exist and instead
suggested a universal Gauss−de Gennes regime.
Before introducing the extended de Gennes regime, we first

review the blob model5,6 for the classic de Gennes regime,
where the chain is considered as a string of blobs with size of D
(Figure 1). Because of excluded volume (EV) interactions,
these blobs avoid each other, and the subchain within a blob
follows the Flory scaling, Lblob ∼ D5/3, where Lblob is the
contour length within a blob. From this description, chain

extension is predicted to scale as ⟨L∥⟩ ∼ D−2/3, and the
confinement free energy is proportional to the number of blobs
F ∼ Nblob ∼ D−5/3. To satisfy the intrablob Flory scaling and the
interblob avoidance, the blob size needs to be larger than the
thermal blob size Lk

2/w, where w is the effective chain width,
such that the repulsion between two blobs is larger than
thermal energy kBT.

18 Therefore, the classic blob model is only
valid for D > Dd* ≈ Lk

2/w.
When decreasing the channel size, we encounter a regime Lk

≪ D ≪ Lk
2/w as initially proposed by Brochard-Wyart and

Raphael.23 This regime was named as “extended de Gennes
regime” by Wang et al.13 In this regime, an anisometric blob
model was developed,13,18,23,24 where the chain is considered as
a string of anisometric blobs (Figure 1). The length of a blob is
redefined as Rblob ≈ D2/3Lk

2/3w−1/3 such that the EV interaction
between two blobs equals kBT, which is sufficient to segregate
blobs. Using the ideal-chain scaling within anisometric blobs,
the scaling of extension L∥ ≈ LD−2/3Lk

1/3w1/3 18 and the scaling
of fluctuation in extension σ2 ≈ LLk

13 were derived and recently
validated by simulations.15

We now consider the confinement free energy in the
extended de Gennes regime, which is an important part of our
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work. In the first study of this regime by Brochard-Wyart and
Raphael,23 the confinement free energy was proposed to be
proportional to the number of anisometric blobs and then
follows F ≈ LD−4/3Lk

−1/3w2/3. Later, the same result was
reached by Reisner et al.2 using a Flory-type free energy
approach. More recently, Tree et al. found that the prediction F
≈ LD−4/3Lk

−1/3w2/3 was inconsistent with the confinement free
energy calculated from simulations, which led them to reject
the anisometric blob model and propose another model.21

In the present study, we find that the anisometric blob model
itself is correct, but a wrong confinement free energy was
derived from this model in previous studies.2,21,23,25 We will
first present the theoretical predictions for the extended de
Gennes regime and then validate them with simulations. We
demonstrate that there is indeed an extended de Gennes regime
and that prior researchers were misled to cast doubt regarding
its existence due to incorrectly describing the polymer free
energy.21 We will also show that this regime is analogous to
what can be found in semidilute polymer solutions.

2. THEORY AND COMPUTER SIMULATION
2.1. Theory for the Extended de Gennes Regime.

According to the anisometric blob model, the channel walls not
only restrict the arrangement of these anisometric blobs but
they also compress each anisometric blob (Figure 1). Such
compression can be understood based on the fact that an
anisometric blob would restore to an isotropic shape in the
absence of the channel walls. The confinement free energy
occurs due to restriction of interblob arrangements and
compression of anisometric blobs. The first contribution is
proportional to the number of blobs Nblob ≈ LD−4/3Lk

−1/3w2/3.
The second contribution is NblobFcom, where Fcom ≈ LblobLkD

−2

is the compression energy within one blob. The term NblobFcom
can be simplified to LLkD

−2 using L = NblobLblob, so we obtain

= +− − −F k LD L w k LL Dk k1
4/3 1/3 2/3

2
2

(1)

where F has been made dimensionless with kBT, and k1 and k2
are order 1 dimensionless prefactors. Note that the second term
corresponds to the confinement free energy of an ideal chain in

a channel. The ratio of the first term to the second term is
(Dw/Lk

2)2/3, which is vanishing small for D ≪ Lk
2/w. The

second term, as a leading term, is forgotten in previous
studies.2,21,23,25 For the first-order approximation, we have F ≈
LLkD

−2 in the extended de Gennes regime, which was also
obtained before.24 Since chain extension scales the same in the
extended and classic de Gennes regimes, differences in their
free energy scaling can be used to distinguish these regimes.
In addition to the blob model, the confinement free energy

can be derived using another approach. In the extended de
Gennes regime, we apply the traditional Flory-type free energy
to calculate the confinement free energy:

≈ + +F
LL
D

L

LL
L w

D L
k

k
Flory 2

2 2

2
(2)

The first term corresponds to the elastic entropy reduction due
to the compression in the transversal directions. The second
term corresponds to the elastic entropy reduction due to
stretching in the longitudinal direction. The third term
corresponds to the EV interaction. The application of above
equation in the extended de Gennes regime can be justified in
this way. The first two terms correspond to the free energy of
an ideal chain. If we gradually increase the chain width from
zero, the EV interaction would also gradually increase from
zero. When the EV interaction is weak, it can be considered as a
weak perturbation to the free energy of an ideal chain and can
be captured by the third term in eq 2. So eq 2 should be valid in
the case of weak EV interaction, i.e., the extended de Gennes
regime. Minimizing the free energy with respect to the
extension yields the equilibrium extension on ⟨L∥⟩ ≈
LD−2/3Lk

1/3w1/3. Substituting it into eq 2, we reproduce the
free energy expression F ≈ LD−4/3Lk

1/3w2/3 + LLkD
−2. Recall

that the compression energy within blobs LLkD
−2 is

independent of the chain extension, and so ignoring it in
previous studies2,13 does not affect the calculation of the
equilibrium extension.
We note that the confinement free energy in the extended de

Gennes regime will gradually approach the case of a confined
ideal chain when the chain width approaches zero. In the case
of w = 0, eq 1 becomes F = k2LLkD

−2. The confinement free
energy of an ideal chain in slitlike confinement has been
determined analytically with a prefactor of (π2/6).26,27 For
channels with square cross sections, the prefactor should be
doubled, and then k2 = π2/3.21 By fitting to data, we will later
show that k1 has a value of 3.0 (Figure 3c).

2.2. Computer Simulation of Polymers. To validate our
predictions in the extended de Gennes regime, we apply the
pruned-enriched Rosenbluth method (PERM)28 to simulate
polymers in square cross-section channels, similar to the
simulations by Tree et al.21 Two polymer models are used in
our simulations: the touching-bead model and the freely jointed
rod model. In the touching-bead model, the bead diameter
equals the chain width. This model has been widely applied to
simulate polymers under all degrees of confine-
ment.13,14,19−22,29 A freely jointed rod model15 was recently
developed to efficiently simulate thin chains. With this model,
we can simulate much longer chains, allowing us to more fully
explore the extended de Gennes regime. The diameter and the
length of the rod correspond to w and Lk, respectively. These
two polymer models are complementary to each other. The
freely jointed rod model is suitable for simulating long and thin
chains but is not applicable for strong confinement with D ≲ Lk

Figure 1. Schematic illustration of different regimes experienced by a
long polymer in a tubular channel when varying the channel cross-
sectional dimension and the chain width. D corresponds to diameter
for a channel with circular cross section and width or height for a
square channel. The black curves represent polymer chains, red circles
represent thermal blobs, and blue circles represent the self-avoiding
blobs. The boundaries between scaling regimes, Dt and Dd, are
determined by our simulations presented in this work.
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due to the coarse-grained nature of the model. The touching-
bead model is applicable for strong confinement but becomes
computationally expensive to simulate long and thin chains.
We implement the PERM algorithm28 in a manner such that

we do not need an initial guess of free energy and we do not
need any parameter optimization. When we use the freely
jointed rod model, the chain growth starts from a rod with a
random orientation. In each step of growth, a new rod with a
random orientation is placed at the end of the chain. If the new
rod overlaps with any other rod or the channel walls, then this
chain dies. Each chain is not grown individually, but in a batch
of Nc chains. The value of Nc is set to 3000, which is the
maximum number allowed by our computer memory for the
chain length of L = 104. Here, the chain length uses units of
segments or beads. The initial weight for each chain is 1/Nc.
That is, Wi = 1/Nc for i = 1, where i denotes the chain length.
After each step of adding a rod, a few chains may die. Suppose
Nd chains die. Then, we randomly pick Nd chains from (Nc −
Nd) survived chains and duplicate these Nd chains so that the
number of chains remains at Nc during chain growth. This is the
so-called enrichment. Without enrichment, the number of
survived chain approaches zero, and we cannot obtain enough
sampling of long chains. Considering that all survived chains
have the same probability p = Nd/(Nc − Nd) to be duplicated,
the weights of all chains are reduced by a factor 1/(1 + p) = (Nc
− Nd)/Nc. That is,Wj,i+1 =Wj,i × (Nc − Nd)/Nc after adding the
(i + 1)-th rod to the j-th chain. When the chain length (number
of rods) reaches the desired chain length L = 104, the growth
stops and the final weight Wj,L of (Nc − Nd) survived chains is
used to calculate the free energy of the chain in the channel Fc =
−kBT ln(∑j=1

j=Nc−NdWj,L). Meanwhile, the extensions of final
chains are also calculated. We run at least 100 batches such that
the total number of sampled chains is at least 3 × 105 for a
given chain width and channel size. The free energy and
extension are averaged over these chains. Note that the weights
of chains are identical in one batch but different among
different batches. The standard deviations of the free energy
among different batches are always around or less than kBT and
typically about 0.1% of the free energy. In the touching-bead
model, during chain growth the i-th bead is not added with a
random orientation but added according to Boltzmann
distribution of orientation energies exp(−Ebend(θi)/kBT),
where Ebend(θi)/kBT = (1/4)(Lk/w)θi

2 and θi is the bending
angle formed by the (i − 2)-th, (i − 1)-th, and i-th beads.14

Recall that the chain width w equals the bead diameter. The
side length of the square channel D is varied from 4Lk to 30Lk
when we use the freely jointed rod model or varied from 4w to
a certain value satisfying L∥ ≈ 6D for the purpose of avoiding
the weak confinement regime15 when we use the touching-bead
model. We also perform the chain growth simulation in bulk.
The free energy in bulk Fb is subtracted from Fc to obtain the
confinement free energy F = Fc − Fb. In addition to real chains,
we perform simulations for ideal chains in square channels. In
these simulations, we simply turn off the rod−rod repulsion.
To establish that these two models provide consistent results,

we compare the confinement free energy obtained using two
models with the same parameter set {w, Lk, D}. Figure 2 shows
the confinement free energy as a function of channel size. The
confinement free energy and the channel size are normalized in
the same way as a previous study by Tree et al.21 in order to
directly compare results. The relative channel size is defined as
δ ≡ D/Lp ≡ 2D/Lk, where Lp is the persistence length equal to
half of the Kuhn length Lk. Considering that the confinement

free energy is proportional to the contour length, F0 ≡ FLp/L ≡
FLk/(2L) is defined to characterize the confinement free energy
of a persistence length. The value of F0 is normalized by Fideal

weak =
(2/3)π2δ−2, where Fideal

weak corresponds to the confinement free
energy per Lp for an infinitely long ideal chain in weak
confinement with δ ≫ 1.26 In agreement with Tree et al.,21 the
plus symbols, corresponding to ideal chains, approach 1 when δ
≫ 1, and other symbols, corresponding to real chains, are
above 1 when δ≫ 1. An interpolation expression was proposed
by Tree et al.21 to approximate the confinement free energy of
an ideal chain from the Odijk to de Gennes regime

π δ
δ δ

≈
+ +

−

− −F
(2/3)

(5.147 3.343 1)ideal

2 2

2 1 2/3
(3)

Equation 3 is also plotted in Figure 2 and agrees with our
simulations of ideal chains. Figure 2c shows a comparison of
the simulation results from the two models. The good
agreement between the models suggests that the coarse-
graining in a freely jointed rod model does not produce
significant errors, at least in the overlap range of the models. It
is expected that the freely jointed rod model works even better
in larger channels because in the long-chain limit the freely
jointed rod model gives the same end-to-end distance (LLk)

1/2

as the wormlike chain in the absence of EV interaction.
We note the combination of the PERM method and the

freely jointed rod model allows us to simulate very long and
very thin chains, which are necessary to study the extended de

Figure 2. Normalized confinement free energy as a function of the
dimensionless channel size. (a) Simulation results using the touching-
bead model with 2 × 104 beads, i.e., L/w = 2 × 104. (b) Simulation
results using the freely jointed rod model with 104 rods, i.e., L/Lk =
104. (c) Comparison of simulation results using the two different
models. The estimated statistical errors are less than symbol sizes.
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Gennes regime but are difficult to simulate using other
methods.13,21 Overall, our simulations allowed us prove how
the transitions between various regimes and scaling of chain
extension depend on w, Lk, and D.
The simulation results using the freely jointed rod model and

the touching-bead model are presented in Figures 3 and 4,

respectively. When using the freely jointed rod model, the
contour length is set as L = 104Lk, and we vary the chain width
and channel sizes with respect to the Kuhn length Lk. When
using the touching-bead model, the contour length is set as L =
2 × 104w, and we vary the Kuhn length and the channel size
with respect to the chain width w. Note that the channel size D
in all figures refers to the real channel size Dreal minus the chain
width w, because the quantity D = (Dreal − w) is relevant to
theoretical predictions and the quantity Dreal is relevant to
experiments.

3. RESULTS AND DISCUSSION
Figure 3 shows the simulation results of ⟨L∥⟩ and F in the
extended to the classic de Gennes regime. The channel size is
varied from 4Lk to 30Lk. The channel size is normalized in a
manner to produce universal curves that allows us to
distinguish the classic and extended de Gennes regimes. In

agreement with our prediction, all data points in Figure 3a
follow the master equation

⟨ ⟩ = −L L Lw Dw L/( ) 0.83( / )k k
2 2/3

(4)

where the prefactor 0.83 is the best fit after setting the
exponent as −2/3. The best power-law fit to the data points
yields an exponent of −0.695 ± 0.004, which is slightly less
than −2/3. Note that using a precise Flory scaling exponent of
0.587630,31 instead of 3/5 leads to the scaling ⟨L∥⟩ ∼ D−0.7018.
Figure 3b shows the confinement free energy. The

confinement free energy is normalized to collapse the results
of different chain widths. As expected, the data follow the
scaling F ∼ D−5/3 for Dw/Lk

2 > 1. The prefactor is determined
to be 4.0.

= −FL Lw Dw L/( ) 4.0( / )k k
3 2 2 5/3

(5)

The dashed line in Figure 3b corresponds to the analytic
expression for ideal chains,26 which is expected to be always
below the data points (real chains). We find that the dashed
line is above a few data points because the analytic expression
for ideal chains only valid for D≫ Lk and overestimates F when
D is only several times of Lk. The boundary between the
extended and classic de Gennes regimes is then given by the
intersection of the dashed and solid lines at Dd = 0.56Lk

2/w.
The crossover from the extended to the classic de Gennes was
investigated using the fluctuation in extension in our previous
study, but the explicit value of Dd was not calculated previously.
Extrapolating the fluctuation behaviors σ2/(LLk) = 0.14 and σ2/
(LLk) = 0.134(Dw/Lk

2)0.2982 in the extended and classic de
Gennes regime, respectively, we obtain Dd = 1.16Lk

2/w. Note
that in our previous study of fluctuation behaviors the channel
cross sections are circles and D corresponds to the diameter. In
the current study, the cross sections of channels are square and
D corresponds to the side length of the square.
To examine in more detail the extended de Gennes regime,

we plot the difference between the confinement free energy of a
real chain and an ideal chain in Figure 3c because in the
extended de Gennes regime eq 1 can be converted to

Figure 3. Results from the freely jointed rod simulations of 104 rods,
i.e., L/Lk = 104. (a) Normalized extension as a function of normalized
size of a square channel (b) Normalized confinement free energy as a
function of normalized channel size. (c) The difference in confinement
free energy between a real chain and an ideal chain. The crossover
between the extended and classic de Gennes regimes is estimated as
Dd = 0.56Lk

2/w. The estimated statistical errors are less than symbol
sizes.

Figure 4. Normalized extension versus scaled channel size from the
touching-bead model simulations. The symbols are simulation results
of 2 × 104 beads using touching-bead model, i.e., L/w = 2 × 104. The
three green lines are calculated from the Odijk equation ⟨L∥⟩/L = 1 −
0.29(D/Lk)

2/3.32 The crossover between the transition regime and the
extended/classic de Gennes regime is estimated as Dt = 2Lk. The
estimated statistical errors are less than symbol sizes.
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− ≈ −F F L Lw Dw L( ) /( ) ( / )k kideal
3 2 2 4/3

(6)

Fideal was calculated from simulations rather than the analytic
expression since channel dimension go down to D = 4Lk. As
expected, the scaling exponent approaches −4/3 when Dw/Lk

2

≪ 1. The value of (F − Fideal) in Figure 3c is 1 order of
magnitude less than the value of F in Figure 3b, which is
consistent with our prediction that Fideal dominates the
confinement free energy in the extended de Gennes regime.
It is intriguing that in the extended de Gennes regime the

chain exhibits real-chain behavior globally (interblob) but
exhibits ideal-chain behavior locally (intrablob). In this regime,
the chain extension, depending on the interblob organization,
follows the real-chain scaling. On the other hand, the
confinement free energy, mainly depending on the intrablob
organization, follows the ideal-chain scaling F ≈ LLkD

−2.
The upper bound of channel size Dd for the extended de

Gennes regime is determined by Figure 3. To determine the
lower bound of channel size Dt, we perform simulations from
the classic/extended de Gennes regime to the Odijk regime
using touching-bead model. Figure 4 shows the extension as a
function of the relative channel size, while the extension is
normalized to collapse data points of different chain widths in
the classic/extended de Gennes regime. The data for D > 2Lk
follow the scaling ⟨L∥⟩ ∼ D−2/3 and agree with eq 4, which is
determined from simulations using the freely jointed rod
model. The agreement suggests the coarse-graining in the freely
jointed rod model induces little error. The critical channel size
Dt, where ⟨L∥⟩ starts to deviate from eq 4, is around 2Lk, which
is insensitive to the chain width. Note that Tree et al. predicted
Dt ∼ w−1, which is inconsistent with our observation. It is worth
mentioning that our simulation results agree with the results by
Tree et al., but Tree et al. failed to determine the correct Dmin
because they did not make a plot with the same normalization
as Figure 3. When Lk < D < 2Lk, the apparent exponent is about
−1, in agreement with many other simulations12,13,33 and
experiments.8,11,34 In strong confinement, the extension follows
the Odijk equation ⟨L∥⟩/L = 1 − 0.29(D/Lk)

2/3.32

We note that the extended de Gennes regime for confined
semiflexible chains is similar to the semidilute marginal
condition proposed and studied by Schaefer et al.36 and
Birshtein,36 which is shown in Figure 5. Applying the classic
blob model, a chain in the semidilute solution is viewed as a
string of blobs.37 Intrablob conformations follow real-chain
behavior, while interblob conformations follow ideal-chain

behavior because the space is fully filled by the blobs. As in the
extended de Gennes regime, the intrablob conformations
should deviate from real-chain behavior when EV interactions
inside a blob is weaker than kBT. Such situation was
investigated and termed as semidilute marginal condition by
Schaefer et al.35 They determined the critical concentration ρ̃ ≈
w/Lk

4 of Kuhn segments, and furthermore, they found a new
characteristic length ξ ≈ w−1/2c−1/2 in monomer−monomer
pair-correlation g(r) ∼ (1/r) exp(−r/ξ). We found that ρ̃ and ξ
for the semidilute marginal condition perfectly match the
critical channel size Dd and the length of anisometric blob Rblob
for the extended de Gennes regime. It is easy to derive that
when Dd = Lk

2/w, the concentration of Kuhn segments in the
channel is c = (L/Lk)/(L∥D

2) ≈ w/Lk
4, which shares the same

expression with ρ̃. Furthermore, using c = (L/Lk)/(L∥D
2) and

L∥ ≈ LD−2/3Lk
1/3w1/3, we obtain the relationship D ≈

c−3/4Lk
−1w−1/4. Substituting it into Rblob ≈ D2/3Lk

2/3w−1/3, we
arrive at Rblob ≈ w−1/2c−1/2, which shares the same expression
with ξ. Compared to the semidilute marginal condition,38,39 the
extended de Gennes regime is easier to be validated and
identified by simulations and experiments, such as measuring
the fluctuation in extension of confined DNA.
Broadly speaking, the separation of the extended/classic de

Gennes regimes is caused by the competition of EV interaction
to thermal energy. Such competition also leads to the
separation of the extended/classic Pincus regimes for a polymer
under tension.15,40 If we compress or stretch a polymer in a
channel, the polymer may experience a transition between a
weak-EV regime to a strong-EV regime, and the scaling
behavior is expected to change, such as the relaxation time.13,15

A key application of the correct confinement free energy in
the extended de Gennes regime is to calculate the recoiling
force f recoil, which needs to be overcome when driving a chain
into a channel.41,42 Applying the expressions of F and L∥ in the
extended de Gennes regime, we derive f recoil = F/L∥ =
(D−2/3Lk

−2/3w1/3 + D−4/3Lk
2/3w−1/3)kBT ≈ D−4/3Lk

2/3w−1/3kBT,
which is different from the expression from the wrong
confinement free energy.25

4. CONCLUSIONS
In summary, we for the first time derive the correct
confinement free energy in the extended de Gennes regime
using the anisometric blob model and validate it by simulations
using a newly developed polymer model. Theoretically, the
extended de Gennes regime is a specific case of a common
polymer system where EV interactions are weak and behavior
of the chain is neither purely real nor ideal Practically, our
results provide theoretical basis for the practical applications of
microfluidic/nanofluidic devices to stretch DNA,7,43−46 such as
the relationship between the chain extension and channel size,
and the calculation of required force to drive DNA into
channels.
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