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The considerable interest in two-dimensional (2D) materials and
complex molecular topologies calls for a robust experimental
system for single-molecule studies. In this work, we study the
equilibrium properties and deformation response of a complex
DNA structure called a kinetoplast, a 2D network of thousands
of linked rings akin to molecular chainmail. Examined in good sol-
vent conditions, kinetoplasts appear as a wrinkled hemispherical
sheet. The conformation of each kinetoplast is dictated by its net-
work topology, giving it a unique shape, which undergoes small-
amplitude thermal fluctuations at subsecond timescales, with a
wide separation between fluctuation and diffusion timescales.
They deform elastically when weakly confined and swell to their
equilibrium dimensions when the confinement is released. We
hope that, in the same way that linear DNA became a canoni-
cal model system on the first investigations of its polymer-like
behavior, kinetoplasts can serve that role for 2D and catenated
polymer systems.

polymers | 2D materials | molecular topology

Two-dimensional (2D) materials have been an active area of
research since the discovery of graphene in 2004 (1). Inves-

tigations have typically focused on the electronic properties of
crystalline materials, but the desire for stretchable and wearable
electronics as well as versatile membranes for chemical sepa-
ration and optoelectronics has shifted interest toward 2D soft
materials (2). In the same manner that the materials industry
in the 20th century was revolutionized by the advent of lin-
ear polymers, 2D polymers may serve an equivalently important
industrial role in the 21st century. Methods exist to synthesize
macromolecules with a planar architecture (3), which must be
complemented with an understanding of 2D polymer statistics.
Beyond the chemistry of planar synthesis, a model system is
desired to explore the underlying physics of 2D polymers. Exfo-
liated graphene has been explored as a model system for 2D
polymer rheology (4), but it has strong size polydispersity and
is not sufficiently large for single-sheet analysis.

Single-molecule investigation reveals subtlety in polymer
dynamics that is lost through ensemble-average techniques and
serves a vital role in connecting molecular-scale behavior to bulk
material properties (5, 6). The behavior of 2D polymers on the
single-molecule level is expected to be qualitatively and quan-
titatively different from 1D polymers, but due to the lack of
complementary mesoscale experimental systems, their statistical
scaling behavior and the nature of their phase transitions are
not well understood (7). For example, controversy exists in the
2D polymer literature over the existence of a transition from a
membrane-like flat phase to a crumpled phase (8, 9). A single-
molecule system that could embody the mechanics of elastic
sheets and the statistics of 2D polymers at visible-microscopy
length scales is desirable.

Single-molecule studies using genomic DNA have revolution-
ized the field of polymer physics in the past two decades and
have established DNA as the canonical semiflexible polymer
(10–14). The utility of viral DNA in this role stems not only
from its monodispersity and the existence of dyes and optics for

its visualization but also, from its widespread commercial avail-
ability. Recent experimental studies have expanded the use of
DNA to study polymers with nontrivial topology, including rings
(15–18), branched chains (19), and knots (20, 21). There are
more complex molecular topologies that are difficult to achieve
without advanced synthetic methods, including polyrotaxanes
(shish kebab molecules) and polycatenanes (linked rings) (22).
Chemistry based on DNA–protein enzymatic reactions has been
demonstrated to generate “Olympic gels” by linking circular
molecules together (23, 24), demonstrating the utility of DNA
as a tool for studying catenated materials.

To understand the physics of 2D polymers as well as those of
catenated systems, it is desirable to have a model experimental
system that fills the same roles as genomic DNA has for linear
polymers. Such a system does exist in the form of the kinetoplast.

A kinetoplast is a DNA structure found in the mitochon-
dria of trypanosome parasites, including those responsible for
human diseases such as sleeping sickness and Leishmaniasis (25).
Unique among organismal DNA, the kinetoplast is composed of
thousands of small loops of DNA (minicircles), roughly 200 nm
in diameter, that are topologically interconnected like chain-
mail rings in a 2D catenated network (26) (Fig. 1A). Within that
network, there are additionally several dozen larger rings (maxi-
circles) containing the mitochondrial genome. The biological
role of this structure is convoluted: the mitochondrial genes from
the maxicircles transcribe encrypted messenger RNA (mRNA),
and the minicircles are transcribed into a “guide” RNA that
edits the mitochondrial mRNA sequence to allow translation. It
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Fig. 1. (A) Schematic diagram of a kinetoplast, a curved sheet-like structure
made of thousands of connected rings of DNA. (B) Fluorescence microscopy
image of a population of C. fasciculata kinetoplasts in solution. The dashed
circle indicates a larger kinetoplast that has undergone replication. (Scale
bar: 10 µm.) (C) Confocal image of a single kinetoplast displayed at 4 angles,
with a wrinkled hemispherical appearance. (Scale bar: 2 µm.)

is believed that the rings are contained in a catenated network
in order to ensure that dividing cells have all of the neces-
sary minicircles (27). Outside the realm of parasitology, limited
mathematical investigation into kinetoplasts has focused on their
network topology (28, 29), but to the authors’ knowledge, there
has been no investigation of their material properties.

The addition and removal of linked DNA in a network are
facilitated by topoisomerases, a family of enzymes that can
change the topology of DNA, are vitally important for cell
division, and are adversely expressed in certain cancers (24).
Assays for ascertaining the presence and function of topoisom-
erase are necessary for biomedical research, and such assays
require a DNA substrate that has a highly mutable topology.
Kinetoplasts from Crithidia fasciculata, a parasite that infects
mosquitoes, are commercially available from multiple companies
for this purpose. The field of single-DNA polymer physics was
made possible in part due to the commercial availability of viral
DNA, and it is fortuitous that we as physicists and engineers can
study kinetoplast DNA without the need to culture parasites and
mosquitoes or to synthesize molecules.

Here, we report on the equilibrium properties and defor-
mation response of individual Crithidia kinetoplasts in solu-
tion (30). We observe that, in good solvent conditions, the
kinetoplasts appear as an extended hemispherical sheet, which
can undergo small-scale thermal fluctuations with a subsec-
ond timescale. Principal component analysis (PCA) is used
to show that, while the ensemble average shape of a kineto-
plast can be approximated by a hemisphere with a diameter
of ∼5 µm, each kinetoplast appears to have a unique confor-
mation, presumably related to subtle differences in topology.
We further show that kinetoplasts behave like elastic sheets,
which can reversibly fold and unfold in microfluidic deformation
assays.

Results and Discussion
Kinetoplasts have primarily been imaged within cells or flattened
onto surfaces for scanning electron microscopy (SEM) (26) or
atomic force microscopy (AFM) (31). In the cell, they appear as
a tight disk, and they appear as a flat ellipsoid on surfaces. We
report on the qualitative appearance of kinetoplasts in solution,
where we can image many of them at population scales (in con-
trast to SEM and AFM imaging) and can observe their dynamics
at equilibrium. A population of fluorescently stained Crithidia
kinetoplasts can be seen in Fig. 1B. In projection, they have a

roughly floral appearance and a diameter near 5 µm. There is
a region of excess intensity around the edge of the kinetoplasts,
likely corresponding to the thick fibril seen in SEM studies (32).
While there is qualitative variation in their wrinkled outline, they
have good monodispersity with respect to size. A small subpop-
ulation of kinetoplasts has been doubled in size by the cell’s
replication mechanism (33), an example of which is circled in
Fig. 1B. Examining kinetoplasts in three dimensions using confo-
cal microscopy (Fig. 1C) reveals that, despite their 2D topology,
the networks have significant curvature and have a hemispherical
shape not dissimilar to a jellyfish bell, with significant wrinkling
and a lip at their opening.

More quantitative data about the 3-dimensional structure of
kinetoplasts are seen in Fig. 2. Fig. 2A shows two projections
of a kinetoplast: one projecting the “cup” onto the image plane
and viewed from the top, and the other viewed from the side.
To characterize the dimensions of the kinetoplast, we compute
the gyration tensor in three dimensions from confocal data and
find its principal eigenvalues, corresponding to the length of the
three perpendicular axes. The shape can be simply described
as a wrinkled bowl with an elliptical cross-section, where the
smallest axis corresponds to the depth of the bowl and the sec-
ond and third correspond to the minor and major diameters
of the opening, respectively. This is confirmed by examining by
eye kinetoplasts with principal eigenvectors that are close to the
orthogonal axes of the pixel grid and the confocal z stack. His-
tograms of all three axes are seen in Fig. 2B, where notable
outliers in the major axis data represent kinetoplasts that have

Fig. 2. (A) Projection of a confocal kinetoplast image onto the xy and xz
planes showing the in-plane major and minor axes and the out-of-plane
transverse axis as determined from the eigenvectors of the 3 × 3 intensity-
weighted gyration tensor. (B) Histograms of the three principal axes for a
population of 31 kinetoplasts imaged with confocal microscopy. The major
axis outliers (hatched) are a small subpopulation of replicated networks.
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been duplicated as part of the cell replication cycle (33). We note
that duplicated kinetoplasts are typically flatter than the standard
ones, suggesting that the observed curvature emerges during or
after network cleavage. The means of the principal diameters of
the population, neglecting duplicated kinetoplasts, are 2.86 ±
0.06, 4.16 ± 0.10, and 5.53± 0.10 µm (all SE). The major axis
of the duplicated kinetoplasts is 7.7 ± 0.4 µm (SE), a factor of
near

√
2 greater than the interphase population, suggesting that

they do indeed contain twice the number of minicircles. Addi-
tional exploration of the equilibrium dimensions of duplicated
kinetoplasts may substantiate theoretical models of 2D polymer
scaling laws.

While the sizes of kinetoplasts show strong monodispersity,
there is significant variation in their visual appearance, with
some appearing as nearly circular ellipsoids and others with intri-
cate edge curvature (Fig. 3A). To interrogate their morphology,
we studied kinetoplasts that were weakly confined in microflu-
idic channels with the height of 2 µm, comparable in height
with their transverse axis. This confinement is not sufficiently
strong to deform them, but orients them with their “opening”
in the plane of channel and with their “lip” forming a contin-
uous bright outline. We can characterize their shape by using
an edge detection algorithm to find the polar coordinates of
the outline, described in greater detail in SI Appendix. A sam-
ple of edge coordinates from a population of 136 kinetoplasts
was analyzed using PCA to determine the most important con-
tributors to their shapes. The principal components (PCs) have
appearances similar to deformed harmonic modes (Fig. 3B). A
vector in the 72-dimensional PC space points uniquely to each
kinetoplast outline, and a pair of PCs will separate the popu-
lation adequately with some overlap. The PCs are ordered by
the amount of variance among the population. The population
varies the most in the “heart-shaped” modes (PC1 and PC2), but
higher-order modes are required to encapsulate the more com-
plex fine structures of the edge. Fig. 3C shows the outline of an
intricate kinetoplast constructed with 3, 6, and 9 amplitudes. The
first three modes are insufficient for constructing the detailed
outline of the molecule, while the finer features are captured

with 6. To show the variation in edge shape across the ensem-
ble, we plot the locations of each kinetoplast in the PC1–PC2
axes (Fig. 3D) and show plots for PC3–PC4 and PC5–PC6 in
SI Appendix. Images of several kinetoplasts are shown on this
plot, corresponding to the red data points in Fig. 3D. The exam-
ple near the center of the distribution appears elliptical, while
those farther to edges have more intricate outlines. Representing
kinetoplasts by their PCs allows a systematic separation in space
that verifies what we see by eye: that there are significant differ-
ences between the shapes of kinetoplasts. The amplitudes along
each of the PCs are by definition uncorrelated, but it is pos-
sible for certain types of kinetoplasts to cluster together. This
is not evident by eye; to ascertain whether the PC data were
clustered into different subpopulations, we used k-means clus-
tering on pairwise combinations of the first 20 PCs and triplet
combinations of the first 10, and evaluated the gap statistic (34)
to determine whether 2 or 3 clusters were appropriate com-
pared with the null assumption of a single cluster. We found no
evidence of clustering in the population.

We surmise that the unique appearance and PC coordinates
of each kinetoplast are due to the topology of its underly-
ing network connectivity. Because this topology is fixed in the
absence of strand breakages, we expect that the appearance of
each kinetoplast should remain similar over longer timescales
and that its location in PC should remain localized. We con-
firm visual similarities in kinetoplasts imaged every 5 min for
half an hour, 4 orders of magnitude longer than their fluctu-
ation timescale (Fig. 3E), and examine their trajectory in PC
space (Fig. 3D). While there is movement across this space,
it is small relative to the observed variation in the popula-
tion. There may be overlap in the PC1–PC2 locations of some
kinetoplasts, but greater localization can be found in higher-
dimensional representations of PC amplitudes. We show “spi-
der plots” of kinetoplasts across the first 6 components in
SI Appendix.

The bright edge of the kinetoplast is likely due to the “fibril”
that has been seen in electron microscopy studies (35). The
fibril is made of many redundantly catenated parallel loops that

Fig. 3. PCA of kinetoplast edge shapes. (A) A subset of 43 of 136 confined kinetoplasts that make up our ensemble used for edge analysis. (Scale bar: 5 µm.)
(B) Images of the first 8 PCs that are calculated from the polar edge coordinates of our ensemble. (C) Reconstruction of a kinetoplast with a complex edge
from its PC amplitudes. Plots show the outline constructed from the first 3, 6, and 9 amplitudes. (D) Scatter plot of the first and second PC amplitudes for
the 136-kinetoplast ensemble. Images are shown for select kinetoplasts throughout PC space (red points). Green points correspond to kinetoplasts observed
over longer timescales at 5-min intervals, with the error bars representing the SD between the time points. (E) Five kinetoplasts observed half an hour apart,
corresponding to the green points in the scatter plot. Their shapes appear visually unchanged, and their PC magnitudes stay localized in PC space. (Scale
bar: 5 µm.)
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form a repeating “rosette” pattern. The relationship between
the fibril, the curvature of the network, and its overall con-
nectivity is not fully known, nor is the causative relationship
between the geometric shape of the fibril and the overall struc-
ture of the kinetoplast. It has been estimated based on restriction
enzyme digestion that the topology of a kinetoplast network
is that of a honeycomb lattice, with each loop connected to
3 others (36). A more recent study has estimated a spectrum
of topologies but still is based around regular lattice structures
(29). Another computational study suggests that the connec-
tivity is such that the network is barely percolated (28). Our
observations of the diversity of apparent shapes and their long
time-stable nature suggest to us that there is a broad spec-
trum of network connectivities that varies significantly from
one kinetoplast to the next. We posit that the lattice picture
is overly simplistic and that the role of the edge fibril has
been underestimated in determining the apparent shape of the
network. The observation of kinetoplast network “individual-
ism” suggests biophysical analyses to ascertain the underlying
topology.

While their shape does not significantly evolve over time,
they undergo dynamic fluctuations at short timescales. For a lin-
ear polymer, the dominant timescale is that of conformational
decorrelation, which is equivalent to the timescale over which
a polymer diffuses a distance equivalent to its radius of gyra-
tion, as well as its stretch-relaxation timescale (37). For a 2D
kinetoplast, these timescales are not necessarily equivalent, and
the fixed topology restricts the conformational space. Over short
periods of time, the kinetoplasts are observed to undergo small
shape fluctuations (Movie S1). The kinetoplasts are observed
to undergo translational and rotational diffusion, albeit slowly,
taking several minutes to diffuse their own diameter or rotate
completely.

To quantify the dynamics of the kinetoplasts, we study the in-
plane anisotropy, ε, defined as the ratio between the minor and
major axes. We calculate the autocorrelation function A(∆t) of
the kinetoplast’s anisotropy:

A(∆t) =
1

σ2
εT

T−∆t∑
t=1

(ε(t)− ε̄)(ε(t + ∆t)− ε̄), [1]

where ε is measured over T camera frames, ε̄ is the average
value over a given time series, and σ2

ε is the sample variance.
An example time series of the anisotropy is seen in Fig. 4A,
and an ensemble of autocorrelation functions and their mean is
seen in Fig. 4B, with data recorded at 50 frames per second. The
autocorrelation function of an individual kinetoplast anisotropy
is very quickly decaying at short timescales and has a longer-
time tail. The population-averaged fast timescale was found to be
0.216± 0.004 s (SE), comparable with that of the much smaller
linear λ-DNA (48 kbp compared with∼12 Mbp of a kinetoplast).
The longer-time tail has an ensemble-averaged characteristic
timescale of 6.5 ± 0.1 s (SE), although this may vary between
kinetoplasts (Fig. 4B) and is the result of microfluidic con-
finement and out-of-plane effects. The kinetoplasts are weakly
confined in the microfluidic channels, which orient the kine-
toplasts in the same plane and suppress out-of-plane rotation
without significantly deforming them. Small-amplitude partial
out-of-plane rotations increase the apparent correlation time
of the kinetoplast’s shape fluctuations, and interactions of the
kinetoplast edge with the wall can lead to isolated changes in
the anisotropy. A discussion of these effects can be found in SI
Appendix.

Microfluidic and nanofluidic confinements are often used to
investigate the mechanical response of soft objects and single
polymers through experiments, such as the nanochannel con-
finement assay (38–40) and the microfluidic constriction assay

Fig. 4. (A) The anisotropy (ratio of minor and major planar axes) of a
kinetoplast over time, with representative images of a local minimum and
maximum. (B) Time autocorrelation function kinetoplast anisotropy show-
ing the average curve over a population of kinetoplasts, each observed
for 100 s at 50 frames per second. The autocorrelation function for each
molecule is shown in gray. Inset shows the same data on a semilogarithmic
axis over a longer time. The short timescale is 0.216 ± 0.004 s (SE), and the
long timescale is 6.5 ± 0.1 s (SE).

(41–43). We examined the deformation response of kinetoplasts
under weak confinement using microfluidic constrictions with a
minimum width of 3.8 µm and a funnel-like entry that increases
hyperbolically to a maximum width of 200 µm over a distance
of 80 µm. The width of the channel, w, as a function of dis-
tance from where the constriction begins, x, can be described
as w(x) = 310 µm2

x+1.55 µm
. A bright-field image of the channel can be

found in SI Appendix. Channels are 2 µm in depth (45). As the
kinetoplasts approach the constriction, they are typically rotated
by the funnel walls such that their major axis is aligned with the
channel and are confined along their minor and transverse axes.
Because most kinetoplasts have a minor axis greater than 3.8 µm,
they fold or crumple to adapt to the constraints of the confine-
ment and elongate along the channel axis. As the kinetoplasts
leave the confining channel, they expand elastically back to their
original equilibrium conformation.

124 | www.pnas.org/cgi/doi/10.1073/pnas.1911088116 Klotz et al.
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Fig. 5. Deformation of a kinetoplast entering a hyperbolic contraction with
a terminal width of 3.8 µm. Major and minor axes of the kinetoplast are
plotted over time as it enters the channel, showing the contraction of the
minor axis and extension of the major axis, with representative images.

Fig. 5 shows the major and minor axes of a kinetoplast enter-
ing a confining channel, as the minor axis decreases by roughly
15% and the major axis elongates by roughly 5%. A parame-
ter often used to characterize the extensibility of deformable
objects in confinement is the deformation ratio, which is the
ratio of the major axis to the width of the confining channel
(41). The average deformation ratio of the ensemble of 18 con-
fined kinetoplasts is 1.57 ± 0.02 (SE), slightly larger than the
1.1 to 1.2 measured for red blood cells in channels comparable
with their size (41). Because there is a distribution of equilib-
rium anisotropies, we also report the lengthening coefficient, the
deformation ratio divided by the equilibrium anisotropy, which
is 1.23 ± 0.02 (SE). Histograms of both quantities are found in
SI Appendix.

The specific deformation ratio that we measure is dependent
on the channel size, which in this study, is only slightly smaller
than a typical kinetoplast minor axis and is expected to increase
in smaller channels. The topological constraints of the kineto-
plast suggest that its extension in smaller channels is bounded,
and future assays measuring the deformation–confinement rela-
tionship in the highly stretched limit may provide information
about the elasticity of catenane bonds.

The hyperbolic entrance to the confining channel gives rise
to an elongational electric field (44) that further deforms the
kinetoplasts as they translate. When being driven toward the
channel, the electric-field gradient compresses the kinetoplast
perpendicular to the direction of motion and stretches it in this
perpendicular direction as it leaves the channel. Similar transient
effects at channel entrances have been seen in red blood cell con-
striction assays (41). The direction-dependent change in minor
axis is not as drastic as that imposed by the confinement, but
can be significant over repeated channel insertions and ejections
of the same molecule. These asymmetric deformations, seen in
SI Appendix, suggest future experiments for interrogating the
elasticity of the kinetoplast sheet using extensional fields and
flows.

Analogies may be made between kinetoplasts and lipid mem-
branes based on the extensive literature on vesicle deformation
(45, 46). Comparisons with vesicles are inherently qualitative
due to the liquid nature of their surfaces. For example, a
markedly different stretch response between polymerized and

liquid sheets is predicted (47), but the relaxation dynamics are
qualitatively similar. The bending modulus of an elastic sheet is
related to its equilibration timescale such that the former can be
estimated from the latter. A dimensional estimate for the relax-
ation timescale of a deformed vesicle presented by Zhou et al.
(45) was derived as a balance of bending forces and viscosity.
Equation 9 of Zhou et al. (45) relates the relaxation time τ , the
solvent viscosity η, the bending rigidity κ, and the equilibrium
radius r through τ = ηr3

πκ
. Using τ = 0.22 s, r = 5 µm, and η =

1 centipoise, we find κ = 1.8 ×10−19 J, comparable with experi-
mental estimates of the bending rigidity of vesicles (47). Vesicles,
while round at equilibrium, are known to deform into shapes that
are akin to the harmonic modes that make up the PCs of kine-
toplast shape (49). Because vesicles are nearly spherical at equi-
librium, their shapes need not be described through PCA, but
similar methods applied to living cell shapes (50) have found bio-
logical correlates to PC locations, suggesting experiments with
living trypanosomes.

The most striking difference between one-dimensional (1D)
and 2D polymers is that, while 1D polymers contract into a
random coil to maximize entropy, the out-of-plane shape fluc-
tuations that contribute to the conformational entropy of a 2D
polymer are predicted to grow with a weaker scaling than the
in-plane radius (51, 52), resulting in “flat” membranes with an
infinite “persistence area.” Despite the intrinsic curvature of
kinetoplasts, this flatness phenomenon explains why they appear
both smooth and stable. Indeed, the radii of gyration of dupli-
cated kinetoplasts were found, based on the Pythagorean sum of
the data in Fig. 2B, to be a factor of 1.4 ± 0.05 greater than the
interphase kinetoplasts. This is consistent with the factor of

√
2

predicted for the flat phase, although further work is required
to improve the precision of this measurement. The asymptotic
smallness of transverse fluctuations is consistent with the low-
amplitude shape variation that we observe over time and the
comparatively fast timescale consistent with a highly restricted
conformational space.

In future experiments, we envision exploring means to sys-
tematically tune the properties of kinetoplasts, which would
enable investigation into topics of interest for 2D polymers. For
example, the stiffness of the kinetoplast can be systematically
modified through the removal of minicircles from the networks,
either through the action of Topoisomerase II (31) or restric-
tion enzymes (36), in sufficiently low concentrations such that
the pattern of removed links does not percolate through the net-
work. These partially decatenated kinetoplasts would maintain
their overall shape but have a reduced areal density of links and
thus, a lower bending rigidity. With these systems, we may be
able to explore the crumpling transition that is predicted to occur
when thermal fluctuations overcome bending rigidity (9). Alter-
natively, we can change the solvent quality in the experiments
by using ethanol-based buffers (52), after which the kinetoplasts
are expected to crumple through a process which is analogous
to the coil-globule transition for 2D polymers (54). We also pos-
tulate that we can stiffen the kinetoplast network by effectively
adding more cross-links, either through treatment of the sys-
tem with Topoisomerase II in the presence of the anticancer
drug ICRF-193 or replacing adenosine triphosphate (ATP)
with a nonhydrolyzable analogue adenylyl-imidodiphosphate
(AMP-PNP). In prior work, we have shown that these treat-
ments inhibit topoisomerase-mediated strand passage and
result in a persistent topoisomerase clamp between two DNA
molecules (24).

In summary, our quantitative analysis of kinetoplasts under
equilibrium and weak confinement conditions establishes their
use as a model system to study the physics of elastic sheets
and 2D polymers. Having imaged more extracellular kinetoplasts
than any previous study, we find molecular individualism that
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had not been appreciated, and our images and analysis sug-
gest an increased role for the outer fibril in determining overall
network structure, topology, and curvature. Our preliminary
investigations into the deformation response of kinetoplasts sug-
gest future investigations of kinetoplasts in complex flow to
complement rheology studies of graphene oxide (55), and their
5-µm size makes them well suited for more detailed studies of
microfluidic and nanofluidic confinement (13). Much like the
first experiments with linear DNA that opened the door to a
new field of single-polymer physics, we hope that kinetoplasts
can serve a similar role for 2D systems.

Materials and Methods
C. fasciculata kinetoplasts were obtained from TopoGEN Inc. They were
stained using the same protocol used to stain viral genomic DNA with
a 8:1 base pair:dye ratio. In short, a solution was prepared consisting of
87.9% (vol/vol) 0.5× Tris-boric acid-ethylenediaminetetraacetic acid (TBE),
4% (vol/vol) beta-mercaptoethanol, 1.3% (vol/vol) YOYO-1 fluorescent dye
at 10 µM, and 6.8% (vol/vol) kinetoplast DNA that had been diluted from
stock to 10 µg/mL such that the stained solution contains 0.1 µg of DNA per
150-µL sample. While the kinetoplast DNA stains within seconds, standard
procedure allows at least an hour of incubation to ensure uniform staining.
The kinetoplast solution was either imaged under a microscope slide or in
a 2-µm-high microfluidic channel, in which case 0.1% polyvinylpyrrolidone
(10 kDa) solution was added to the buffer to prevent sticking and electroos-
mosis. While the diffusion of kinetoplasts is slow (taking several minutes
to translate their own diameter), glycerol was added to the solution (77%
vol/vol) to viscosify it and immobilize the kinetoplasts for confocal imag-
ing, which was performed with a DeltaVision Elite Widefield Deconvolution
microscope.

Microfluidic channels were made by pouring polydimethylsiloxane pre-
polymer onto a master silicon wafer containing features patterned in SU8
using photolithography. After annealing at 65 ◦C overnight, the cured
PDMS was removed from the master wafer and cut into individual chips;
then, holes were poked in each reservoir. The PDMS chips were cleaned by
sonicating them in ethanol solution for 20 min and storing them overnight
in TBE buffer to prevent permeation-driven flow. For experiments, chips
were removed from the buffer, cleaned with water, dried, and placed onto
a clean glass slide soaked previously in NaOH. DNA-containing buffer was
pipetted into the reservoir hole of each device; then, platinum wires con-
nected to a voltage supply were inserted. The voltage was activated to
move the DNA into the field of interest within the device and stopped
for imaging.

Kinetoplasts were imaged using a Zeiss Axiovert microscope with a
63× oil immersion lens (numerical aperture = 1.4), illuminated using a
filtered light-emitting diode (ThorLabs), and recorded by a Photometrics
95B Prime CMOS camera interfaced with a computer using Micro-Manager
(56). Images were analyzed using home-built MATLAB scripts. The 2 pri-
mary functions of the software were to calculate the gyration tensor and
its eigenvectors and eigenvalues and to detect the edges and perform
PCs analysis based on a population of detected edges. Both procedures
are described in greater detail in SI Appendix, and the code is available
on request.

Raw data in the form of microscopy videos in .tif format are avail-
able on the Harvard Dataverse public repository located at https://doi.org/
10.7910/DVN/I4TWFV. Processed data used for the preparation of figures are
in Dataset S1.
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