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Controlled liquid entrapment over patterned sidewalls in confined geometries
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Liquid entrapment over patterned surfaces has applications in diagnostics, oil recovery,
and printing processes. Here we study the process of oil displacement upon sequential
injection of water over a photopatterned structure in a confined geometry. By varying the
amplitude and frequency of triangular and sinusoidal patterns, we are able to completely
remove oil or trap oil in varying amounts. We present a theoretical model based on
geometrical arguments that successfully predicts the criterion for liquid entrapment and
provides insights into the parameters that govern the physical process.
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I. INTRODUCTION

In oil recovery and soil remediation, displacement of liquids such as oils and liquid pollutants
from the pores is typically achieved by injecting another liquid [1–6]. The geometric morphology
of the pores naturally plays an important role in liquid recovery where surface roughness creates
challenges in displacing the trapped liquid. Roughness often plays a detrimental role for the above
applications. In contrast, several applications prefer a liquid layer over a rough surface. In diagnostic
research, for instance, there is an increasing interest in building microfluidic platforms that create
isolated aqueous microreactors. Such isolation of aqueous environment is achieved by introducing
an artificial defect on the surface such as an obstacle or a depression [7–11]. Similarly, extensive
research on liquid-infused surfaces demonstrates that a trapped liquid layer over a patterned surface
lends remarkable surface properties [12–19]. Thus depending on the application, it may be desirable
to either remove or trap a liquid layer over a surface.

There have been a series of studies on liquid-infused surfaces with geometric features on the
order ∼10 μm where the authors show how the preexisting layer of oil in a groove (a model for
a liquid-infused surface) can be drained by injecting water [16–19]. They also examined the effect
of aspect ratio of the groove, presence of obstacles, viscosity ratio of the two phases, and presence
of surfactant in the aqueous phase on the oil drainage. Though these studies are very useful for
fundamental understanding of the oil drainage process, the investigators did not consider the effect
of groove shape. Recently, we studied oil entrapment over isolated obstacles and demonstrated the
importance of obstacle shape in controlling the entrapment process [20].

In this article, we systematically examine the displacement of a preexisting layer of oil over a
photopatterned wavy surface to understand the effect of surface roughness on displacement of oil.
Specifically, we study the effect of oil displacement by water over triangular- and sinusoidal-patterned
sidewalls in a microchannel. The variations in amplitude and frequency allow us to control the
surface roughness. We describe a simple geometrical model to explain the evolution of the interface
and validate it with our experimental results. The model provides useful physical insights about
the process and specifically helps identify relative importance of dimensionless length scales that
govern the system. We experimentally validate the criterion to remove or trap the preexisting oil
inside the pattern. We believe our results will be useful for research in oil recovery, soil remediation,
diagnostics, and liquid-infused surfaces. Our study can also be useful in fiber coating and printing
applications where the shape of fibers and printing grooves can influence the physical process
[21–25]. Last, we hope our results will help researchers building models for porous media flows to
incorporate the effect of surface shape.
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FIG. 1. (a) Schematic of the experimental setup. Immiscible liquid-liquid displacement in a glass
microchannel over a triangular-patterned sidewall. The channel is first filled with oil (decane), and then water is
introduced into the channel. (b) Schematic of the theoretical setup. The triangular geometry can be represented
by two dimensionless length scales: amplitude m = A0

W
and frequency n = W

λ
. We also define angle α such

that tan(α) = 4mn. For low capillary and Reynolds numbers, we approximate the interface between oil and
water as a circular arc that satisfies static contact angle conditions at fluid-solid interfaces. We describe the
circular arc in terms of angle of intersection with horizontal at left-triangular wall (γ1), angle of intersection
with horizontal at right-triangular wall (γ2), and angle of intersection with horizontal at top sidewall (β).
(c) Time-series microscope images from experiments during the immiscible displacement process. Scale bar is
200 μm.

We present our experimental and theoretical setup in Sec. II where we introduce the dimensionless
groups that govern the process. In Sec. III we provide results and discussion where we emphasize
the geometric relations that lead to complete displacement, partial displacement, and complete
entrapment of oil within the patterned structures. We also show that our experimental and theoretical
results are in good agreement. Finally, we discuss the implication of our results for practical
applications and future research in Sec. IV.

II. EXPERIMENTAL AND THEORETICAL SETUP

A schematic of our experimental setup to study immiscible liquid displacement is presented in
Fig. 1(a). We use an acrylated glass microchannel (Hilgenberg GmbH) with length L = 18 mm
(x direction), width W = 1 mm (y direction), and height H = 50 μm (z direction). We first
fill the channel with a mixture of photocurable polyurethane acrylate precursor (MINS 311RM,
Minuta Tech.) with 5% (volume/volume) photoinitiator 2-hydroxy-2-methylpropiophenone (Sigma-
Aldrich). Using microscope-projection lithography, we photopattern a repetitive structure at one of
the sidewalls [11,20,26–30]. In this study, we pattern triangular and sinusoidal structures with 30
different combinations of wavelength (λ) and amplitude (A0). We use six different wavelengths λ =
[250,350,400,500,750,1000] μm and five different amplitudes 2A0 = [75,100,200,300,400] μm.
For a distance of 250 μm before and after the pattern, we create a flat structure with amplitude 2A0 to
ensure smooth displacement at the entrance and exit. After the photopatterning step, we sequentially
fill the channel with oil (decane, Sigma-Aldrich) and water by a syringe pump (Harvard Apparatus)
at a constant flow rate Q = 5 μl/min.

To model our physical system, we define the following variables: density of water ρw (103 kg/m3),
density of oil ρo (760 kg/m3), viscosity of water μw (1 mPa s), viscosity of oil μo (1 mPa s), interfacial
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tension between oil and water σ (52 mN/m), oil-in-water contact angle with patterned sidewall θ , and
oil-in-water contact angle with unmodified sidewall β. Physical variables combined with geometrical
parameters yield several dimensionless groups such as Reynolds number Re = ρwQ

Wμw
, capillary num-

ber Ca = μwQ

WHσ
, aspect ratio H

W
, dimensionless amplitude m = A0

W
, dimensionless frequency n = W

λ
,

viscosity ratio N = μo

μw
, and contact angles θ and β. We also define angle α such that tan(α) = 4mn.

As we demonstrated in our previous work, significant simplifications are possible under certain
physical conditions for an immiscible liquid displacement process [20]. We can neglect effects due
to viscosity contrast since we use decane and water in our system for which N ≈ 1. For the operating
conditions we used in our system, Re ≈ 0.08 and Ca ≈ 3 × 10−5. Low values of Re and Ca imply
that interfacial stress significantly dominates over viscous and inertial stresses, and so the interface
is not perturbed by the flow. Therefore, we neglect the pressure drop over a length scale of W

within the water phase 	P ∼ 12μwQ

H 3 relative to pressure drop across the interface 
 ∼ 4σ ( 1
W

+ 1
H

)
as 	P



≈ 3Ca(W

H
) ≈ 6 × 10−4. A similar analysis is also possible for the oil phase. Therefore we

assume quasistatic flow conditions and model the interface between oil and water phase in the x–y

plane as a circular arc that satisfies the static contact angle conditions at the fluid-solid boundaries.
We discuss the effect of variations in Ca and N in Sec. III.

Figure 1(b) is a schematic of our theoretical setup for a triangular-patterned sidewall. We assume
the origin to be at the bottom left corner and scale the coordinates with W to define x̃ = x

W
and ỹ = y

W
.

In rest of the article, all the discussion is in a dimensionless coordinate system, and for simplicity, we
drop the tilde from the dimensionless coordinates. To construct a circular arc, we need to find three
quantities: x coordinate of the center of the arc xc, y coordinate of the center of the arc yc, and the
radius of the arc Rc. In particular, we are interested in the arc that subtends an angle γ1 with horizontal
at the left triangular wall, γ2 with horizontal at the right triangular wall, and β with horizontal at the
top sidewall. We note that the height of the intersection at left and right triangular walls needs to
be such that 0 � y1, y2 � 2m. Though it might appear that the arc should always intersect the left
triangular wall at angle θ or γ1 = α − θ , and should touch the right triangular wall or γ2 = α, we
show later that since y1 and y2 are bounded, γ1 and γ2 are not always α-θ and α, respectively.

Figure 1(c) shows representative time series of microscope images during the immiscible
displacement process. As the water displaces the oil phase in a triangular trough, the interface
moves downward on the left triangular wall until the interface touches the right triangular wall (see
t = 0.67 s). The interface then pinches off and breaks into two parts where one part stays behind
with the trapped oil and the other progresses to the next triangular trough. The microscope images
suggest that after the breakup of the interface, the interface with the trapped oil readjusts its curvature
to satisfy the contact angle condition. For a case with no contact angle hysteresis, we would expect
a symmetrical oil entrapment post-pinch-off. However, our system shows an asymmetrical interface
post-pinch-off (see t = 1 s) suggesting that there is an effect of contact angle hysteresis. We discuss
the effect of contact angle hysteresis in the Appendix. We note that our geometrical model is a
first-order approximation of the actual experiments and captures only the interface evolution until
the interface meets the right triangular wall. Also, as mentioned before, we do not predict evolution
of interface with time and compare only quasistatic interface shapes.

We now discuss how to evaluate xc, yc, and Rc. From Fig. 1(b), we write the following equations
using geometry:

yc = y1 + Rc cos γ1, (1)

yc = y2 + Rc cos γ2, (2)

1 = yc + Rc cos β, (3)

xc = 1

2n
− y1

tan α
+ Rc sin γ1, (4)

xc = 1

2n
+ y2

tan α
− Rc sin γ2. (5)
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FIG. 2. Four representative cases for oil capture in a triangular pattern obtained from theory: (a) y1 = 0,

y2 = 0, (b) 0 < y1 < 2m,0 < y2 < 2m, (c) 0 < y1 < 2m,y2 = 2m, and (d) y1 = 2m,y2 = 2m.

Equations (1)–(5) are also subjected to the constraints 0 � y1 � 2m and 0 � y2 � 2m. Therefore,
we divide the entrapment process for a triangular pattern into four cases, as shown in Fig. 2:

(1) y1 = 0, y2 = 0. This is the case of no entrapment, as shown in Fig. 2(a). Here γ1 = α − θ and
γ2 = α. We subtract Eq. (4) from Eq. (5) to obtain y1 + y2 = Rc tan α[sin α + sin (α − θ )]. Upon
simplification we obtain y1 + y2 � 0 when

tan α = 4mn � tan
θ

2
. (6)

Hence, there is no capture when 4mn � tan θ
2 . This is consistent with qualitative expectation, i.e.,

for higher values of m and n, or larger amplitudes and frequencies, we are more likely to get oil
entrapment.

(2) 0 < y1 < 2m, 0 < y2 < 2m. This is the case of entrapment when both y1 and y2 are not at the
end of left and right triangular walls, as shown in Fig. 2(b). As discussed, for this case, we require
that 4mn > tan θ

2 . In this case too, γ1 = α − θ and γ2 = α. Therefore, we solve Eqs. (1)–(5) to get
xc, yc, Rc, y1, and y2. Here we give the solutions of y1 and y2 after simplifications [the rest of the
variables can be evaluated from Eqs. (1)–(5)]:

y2 = cos2 θ
2 − cos2 α

cos2 θ
2 + cos α cos β

, (7)

y1 = y2

⎛
⎝1 − tan θ

2
tan α

1 + tan θ
2

tan α

⎞
⎠. (8)

Equations (7)–(8) show that y1 � y2. Since above equations are valid only when 0 � y2 � 2m, we
can also evaluate the condition for α when y2 = 2m from Eq. (7) (not discussed here). Moreover,
we also recover Eq. (6), i.e., y1,y2 = 0 when tan α = tan θ

2 .
(3) 0 < y1 < 2m, y2 = 2m. This is the case of entrapment when y2 is at the end of right triangular

wall but y1 is still in the middle, as shown in Fig. 2(c). In such a case, the interface intersects the right
triangular wall at an angle and is no longer tangential. We solve for xc,yc,Rc,y1,γ2 from Eqs. (1)–(5)
by substituting y2 = 2m, γ1 = α − θ , and keeping γ2 as a variable. Below we provide a solution
for γ2 after appropriately rearranging the equations [the rest of the variables can be calculated from
Eqs. (1)–(5)]:

cos γ2 +
(

4m

2m + 1

)
cos β +

(
2m − 1

2m + 1

)
cos θ

cos α
+

(
2m − 1

2m + 1

)
tan α sin γ2 = 0. (9)

Equation (9) has an analytical solution for cos γ2 = −c1+
√

b4
1+b2

1(1−c2
1)

1+b2
1

where b1 = ( 2m−1
2m+1 ) tan α, c1 =

( 4m
2m+1 ) cos β + ( 2m−1

2m+1 ) cos θ
cos α

. Thus we can evaluate the complete solution for the case when the
interface reaches top of the right triangular wall.

(4) y1 = 2m, y2 = 2m. This is the case of entrapment when both y1 and y2 are at the end of
left and right triangular walls, as shown in Fig. 2(d). We solve Eqs. (1)–(5) by using y1 = 2m,
y2 = 2m and substituting γ1 and γ2 as variables. We observe that the system is now symmetric or
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γ1 = γ2 = γ . Here we provide an equation to solve for γ [the rest of the variables can be calculated
from Eqs. (1)–(5)]:

cos γ + cos β + tan α

(
2m − 1

2m

)
sin γ = 0. (10)

Equation (10) also has an analytical solution for cos γ = −c1+
√

b4
1+b2

1(1−c2
1)

1+b2
1

where b1 = ( 2m−1
2m

) tan α,
c1 = cos β. Equation (10) is independent of θ , which is expected since the interface at the left
triangular wall is not subtending the contact angle. Also, for the extreme case of α = π/2, the
equation yields γ = 0, or the interface becomes a straight line connecting the extreme points of the
triangular pattern. This result is also consistent with expectation. Last, the condition for y1 = 2m

also captures the effect of pinning, i.e., for large values of tan α or larger slopes of triangular pattern,
the interface is pinned at the extreme point at the left triangular wall and traps a large amount of oil.

Once the values of y1 and y2 are calculated, we also find the amount of oil trapped by calculating
the area between the interface and the patterned surface (see the Appendix for the full solution).
However, we can approximate the amount of oil trapped by finding the area of triangle formed by
y1, y2 and the lowest point of the trough. The dimensionless amount of oil entrapped ã is defined as
the ratio of the area between the interface and the pattern relative to the area of the pattern:

ã ≈
1
2

y1

sin α

y2

sin α
sin (π − 2α)
4m2

tan α

≈ y1y2

4m2
. (11)

For a constant value of mn (or α) and θ , Eq. (11) predicts the following:

y1 = 0, y2 = 0 ⇒ ã = 0, (12)

y1 < 2m, y2 < 2m ⇒ ã ∼ m−2, (13)

y1 < 2m, y2 = 2m ⇒ ã ∼ m−1, (14)

y1 = 2m, y2 = 2m ⇒ ã ∼ 1. (15)

III. RESULTS AND DISCUSSIONS

A summary of our experimental and theoretical results for a range of m and n is provided in
Fig. 3. Values of θ = 25π

180 and β = 35π
180 are used for theoretical calculations (see the Appendix

for experimental basis of values for θ and β). Overall our experimental and theoretical results are
consistent with expectation since the amount of trapped oil increases with increase in both m and n. A
qualitative comparison between amount of oil trapped in images from experiments and predicted from
theory suggests good agreement. We note that the higher the value of m, the critical value of n at which
there is nonzero oil capture is lower. We predict this trend in Eq. (6) that for a nonzero oil capture
the frequency should be greater than ncrit, theory = 1

4m
tan ( θ

2 ). For 2m = [0.075,0.1,0.2,0.3,0.4],
our model predicts ncrit, theory = [2.7,2.0,1.0,0.59,0.51]. The experiments show nonzero capture for
n � [2.8,2.5,1.33,1.0,1.0], which is in accordance with our prediction.

Equation (6) shows we can combine the effect of amplitude and frequency to predict the transition
from no capture to capture in the parameter mn, a measure of slope of the triangle. Since the slope
stays constant in a triangular pattern, we photopolymerized a sinusoidal structure with the equation
y = m[1 + cos (2πnx)] to explore the effect of variation in local slope. We created structures with
the same ranges of m and n to do a direct comparison with the results from the triangular patterns.
We also modified the theoretical calculations for sinusoidal patterns (see the Appendix for details).

The results from sinusoidal patterns are summarized in Fig. 4. Figure 4 shows that similar to
triangular structures, the oil capture increases with m and n, and experimental trends are captured
by the theory. For 2m = [0.075,0.1,0.2,0.3,0.4], we observe that the experiments show nonzero
capture in a sinusoidal pattern for n � [2.5,2.0,1.33,1.0,1.0] and the theory predicts ncrit, theory =
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FIG. 3. (a) Experiment results and (b) theoretical map of entrapped oil for triangular pattern with different
values of frequency (n) and amplitude (2m). The amount of oil trapped increases with increase in amplitude
and frequency. Scale bar in experimental images is 200 μm. Values of θ = 25π

180 and β = 35π

180 were used for
theoretical calculations.

[2.3,1.9,1.2,0.95,0.8] (see the Appendix for details). Thus experiments and theory are in agreement
for the transition from no capture to capture. However, we note that for a sinusoidal pattern, the
relationship ncrit, theory ∼ m−1 is no longer valid since the local slope continuously changes with
position. Therefore, a comparison of ncrit, theory between triangular and sinusoidal patterns shows that
at low values of m, ntheory, crit is lower for sinusoidal patterns, and the trend reverses for higher values
of m. To understand these results, we can envision sinusoidal pattern as piecewise linear segments
with varying slopes. At low values of m, the interface is less curved due to lack of confinement. As
the interface moves down the left sidewall of the sinusoidal pattern, it meets with regions of large
local slope in right side of the pattern, otherwise not possible in a triangular pattern. In contrast, at
high values of m, the interface is forced to bend more and misses the region of large local slope.
The above result might appear to be counterintuitive since it suggests that for higher values of m,
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FIG. 4. (a) Experiment and (b) theoretical results of entrapped oil for a sinusoidal pattern with different
values of frequency (n) and amplitude (2m). The amount of oil trapped increases with increasing amplitude
and frequency. Scale bar in experimental images is 200 μm. Values of θ = 25π

180 and β = 35π

180 were used for
theoretical calculations.

a sinusoidal pattern needs larger frequencies to trap oil. However, the transition from no capture
to capture is not a complete metric to compare the entrapment from the two patterns. We thus
compare in Fig. 5 results from experiment and theoretical calculations of dimensionless amount of
oil entrapped ã for different values of m and n.

Figure 5(a) summarizes results of ã for triangular patterns. The theoretical predictions can be
understood from the analysis discussed in Eqs. (12)–(15). ã has four regimes when plotted with
tan α = 4mn, i.e., ã ∼ 0, ã ∼ m−2, ã ∼ m−1, and ã ∼ 1. Therefore, once ã > 0, the amount of oil
entrapped is different for different values of m. However, as 4mn increases, the difference between
different profiles decrease as all of them approach ã ∼ 1. The experimental data qualitatively agree
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FIG. 5. Dimensionless amount of oil entrapped for (a) triangular pattern and (b) sinusoidal pattern. The
symbols represent experimental data and solid lines represent theoretical calculations. Phase diagram of
transition from ã < 0.1 to ã > 0.1 for (c) triangular pattern and (d) sinusoidal pattern. Closed symbols represent
ã > 0.1, and open symbols represent ã < 0.1. The solid line is constructed from numerical calculations.

with our theoretical predictions. Nonetheless there are some quantitative differences for several
possible reasons. We ignore the effect of the third dimension, which plays a role in the shape of
interface. As we show in the Appendix, the contact angle observed from the microscope images is
dependent on the position inside the triangular pattern, probably because of the curvature effects in
the third dimension [31,32]. However, such effects have been currently ignored in the model since
we assume θ to be independent of the third dimension. We also assume the system to be quasistatic
and ignore the effect of contact angle hysteresis that might alter the evolution of the interface. For
instance, in Fig. 1(c), during the pinch-off process, the interface readjusts near the point of contact
(t = 0.67s). We do not account for any preferred values of γ2 based on surface energies in our model.
Last, a thin layer of oil that may be deposited in the photopatterned structure can alter the contact
angle and surface properties of the structure [20].

Figure 5(b) summarizes results of ã for the sinusoidal patterns. There are some similarities and
some differences when compared to the triangular pattern. Like the triangular pattern, theoretical
profiles ã are 0 for low values of 4mn (a measure of average slope), but the curves for different values
of m do not become nonzero at the same value of 4mn. This is expected since ncrit, theory ∼ m−1

doesn’t hold for a sinusoidal pattern, as previously discussed. Similar to triangular patterns, for
moderate values of 4mn, different m values yield different ã profiles, and for high values of 4mn

all curves start to approach a limiting value. The experimental data also agree qualitatively with
the theoretical predictions. However, a major difference in the predicted profiles of the two patterns
is that once ã > 0, sinusoidal patterns display a steep rise in ã whereas triangular patterns show a
rather gradual rise in ã. This happens because once the critical condition is reached, the entrapment
is significant due to a concave shape in the middle portion of the sinusoidal pattern. This is visually
supported upon comparing Figs. 3 and 4 where entrapment is larger for the sinusoidal pattern. This
result underscores the need to include the effect of pattern shape to predict the process of entrapment.
Moreover, it also shows that looking at the transition from no capture to capture doesn’t provide a
complete picture.

Figures 5(c) and 5(d) show the transition from ã < 0.1 to ã > 0.1 for both the patterns. The solid
lines in phase diagrams show the minimum value of m for a given n at which the ã = 0.1. We note
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FIG. 6. Effect of capillary number Ca and viscosity ratio N on liquid entrapment. (a) We vary Ca by two
orders of magnitude by increasing the flow rate of the flooding phase. We do not observe any significant
variation in entrapped oil. Decane is used as trapped phase, and water is used as flooding phase (N = 1).
(b) We obtain N = 0.2 by using mixture of water + glycerol (viscosity = 5 mPa s) as a flooding phase with
decane as entrapped phase. Similarly, we obtain N = 3 by using water as flooding phase and hexadecane
(viscosity = 3 mPa s) as trapped phase. We do not observe any significant variation on entrapment with N .
Ca ∼ 10−5. Scale bar is 200 μm, 2m = 0.4,n = 4.

that the sinusoidal patterns are able to trap ã = 0.1 at smaller values of m as compared to triangular
patterns. This is consistent with analysis from Figs. 5(a) and 5(b). Moreover, the value of a = 0.1
is just an example, and similar phase diagrams can be constructed for other values of ã. Overall the
results from experiments agree with predicted phase diagram.

Our analysis suggests some useful design principles. For applications where one wants to trap a
large amount of oil, higher values of mn, lower values of m, and large variations in local slope would
be preferred. Though mn � 1

4 tan θ
2 is derived for a triangular pattern, it may be a good starting point

to estimate the overall global slope. Similarly, depending on the desired value of ã, different values
of m can be used. For instance in applications where width is not defined, dynamic length scales
controlled by process parameters can provide flexibility to tune the value of m. On the other hand,
if we wish to first deposit and then remove a layer of liquid from a patterned surface, the pattern
should have lower values of mn, higher values of m, and small variations in local slope.

We note that our analysis is currently limited to a structure that is periodic in only one direction.
However, there are several geometrical systems that are periodic in two directions [12–19]. The
challenge in extending our approach to such systems arises from the effect of wetting dynamics
since the interface can now progress in two directions and interface speed is required to predict
relative movement between the two directions. We refer the readers to reports that discuss these
effects [33,34]. We also note that our analysis is currently restricted to a case where liquid flows
parallel to the corrugated surface, and the results would be modified if the flow direction changes.
However, our current approach of circular arc approximation can still be extended to a different flow
direction.

To understand the validity of our model, we vary both capillary number Ca and viscosity ratio
N . The results are summarized in Fig. 6. We vary Ca by increasing the water flow rate Q =
5–500 μl/min and observe that liquid entrapment remains unaffected upon increase in Ca by
two orders of magnitude [Fig. 6(a)]. This is consistent with expectation since Ca ∼ O(10−1) is
required for droplet breakup in unbounded flows [35]. Even in confined flows, large deformations
in droplets are estimated to occur beyond Ca ∼ O(10−2) [36]. Therefore, we expect our circular
arc approximation to hold until Ca ∼ O(10−2). We also vary N by modifying the flooding and
trapped phases [Fig. 6(b)]. Water as flooding phase and decane as trapped phase gives N = 1.
By using a mixture 50 w% water–50 w% glycerol (viscosity = 5 mPa s) as flooding phase and
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decane as trapped phase, we get N = 0.2. Last, by using water as flooding phase and hexadecane
(viscosity = 3 mPa s) as trapped phase, we get N = 3. In these experiments, we keep the minimum
flow rate of Q = 5 μl/min. The results clearly show that N doesn’t affect the entrapment process
significantly. We note that this is also consistent with expectation since deformation of an interface
is similar for N ∼ O(1) in both confined and unconfined flows [35,36]. Therefore our model is valid
until Ca < O(10−2) and N ∼ O(1).

IV. CONCLUSION

In this article, we discussed the process of liquid entrapment by sequential injection of immiscible
liquids. We experimentally photopatterned triangular and sinusoidal structures with different
dimensionless amplitudes m and dimensionless frequencies n, and built a quasistatic model that
predicts the process of entrapment by approximating the interface as a circular arc. Our experimental
and theoretical results are in good agreement, and our analysis highlights the importance of including
the shape of the pattern in understanding the entrapment process. Specifically, we discuss using
global slope mn, dimensionless amplitude m, and shape of pattern as design principles to control
the entrapment process.

We believe our work can be useful for several applications. In oil recovery and soil remediation
research, our platform can be used to quantitatively investigate the effect of shape of surface on
enhanced oil recovery, and to rapidly screen chemicals that are successful in removing a trapped
layer of oil. The effect of wetting in oil recovery can also be explored by combining experimental and
theoretical research. Researchers interested in parallel experimentation for diagnostic research may
also find this platform useful for creating several isolated aqueous pockets. Moreover, our platform
can be easily adapted for large-scale phtopatterning and advanced microscopy techniques that allow
this platform to be used for existing material synthesis methods [37]. For applications in designing
liquid-infused surfaces, our results could provide design principles for successful entrapment of
liquid layers. Understanding the effect of surface shape and amplitude of pattern on entrapment can
also help research in the areas of fiber coating and gravure printing processes where dynamic length
scales are involved [23–25]. Last, we hope that our results will help researchers building models for
porous media flows using first principles to include the surface shape in their models [38,39].
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APPENDIX

1. Theoretical setup for sinusoidal pattern

A schematic of the theoretical setup for a sinusoidal pattern is provide in Fig. 7. Similar to the
triangular pattern, we write the following equations from geometrical balances:

yc = y1 + Rc cos γ1, (A1)

yc = y2 + Rc cos γ2, (A2)

1 = yc + Rc cos β, (A3)

xc = x1 + Rc sin γ1, (A4)

x2 = xc + Rc sin γ2, (A5)
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FIG. 7. Schematic of the theoretical setup. The sinusoidal geometry here is mathematically describe as
y = m[1 + cos (2πnx)] where m and n are two dimensionless length scales given by amplitude m = A0

W
and

frequency n = W

λ
. For low capillary and Reynolds numbers, we approximate the interface between oil and

water as a circular arc that satisfies static contact angle conditions at fluid-solid interfaces. We describe the
circular arc in terms of angle of intersection with horizontal at the left wall (γ1) where 0 � x � 1

2n
, angle of

intersection with horizontal at right wall (γ2) where 1
2n

� x � 1
n
, and angle of intersection with horizontal at

top sidewall (β).

where

y1 = f (x1) = m[1 + cos (2πnx1)], (A6)

y2 = f (x2) = m[1 + cos (2πnx2)], (A7)

tan α = −f ′(x1) = 2πmn sin(2πnx1), (A8)

cos γ1 = cos α cos θ + sin α sin θ, (A9)

sin γ1 = sin α cos θ − sin θ cos α, (A10)

tan γ2 = f ′(x2) = −2πmn sin(2πnx2). (A11)

Equations (A1)–(A5) are combined with Eqs. (A6)–(A11) and are numerically solved for x1, x2,
xc, yc, and Rc under the constraint 0 � y1,y2 � 2m. We note that the sinusoidal pattern has only
one regime where γ1 = α − θ is always true, unlike triangular pattern. Also, due to range of slope
available in the sinusoidal pattern, the interface is always able to touch the right side of the pattern.

2. Calculation of amount of oil entrapped for triangular pattern

Once we obtain the solution for y1, y2, Rc, γ1, γ2, we can find the exact value of ã as

ã =
y1y2

tan α
+ R2

c

2 [sin (γ1 + γ2) − γ1 − γ2]
4m2

tan α

. (A12)

Equation (A12) is consistent with Eq. (11) where we assumed the interface to be a straight line
connecting y1, y2 and ignored the contributions due to the curvature of interface.
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FIG. 8. Microscope images are used to evaluate the value of θ . We use θ = θflat since θleft and θright are
observed to be dependent on the pattern. Scale bar is 200 μm.

3. Calculation of amount of oil entrapped for sinusoidal pattern

Once we obtain the solution for x1, x2, y1, y2, Rc, γ1, and γ2, we can find the exact value of ã as

ã =
(y1+y2)(x2−x1)

2 + R2
c

2 [sin (γ1 + γ2) − γ1 − γ2] − m
[
x2 − x1 + sin (2πnx2)−sin (2πnx1)

2πn

]
m/n

. (A13)

4. Experimental measurement of contact angles

Microscope images are used to measure the contact angle of the modified sidewall (Fig. 8).
We evaluate θflat = 25◦ after averaging θflat from several images. We observe that θflat is relatively
constant across different patterns. In contrast, the contact angle within the triangular pattern walls
θleft and θright is larger than θflat due to the effect of third dimension [20,31,32]. Moreover, θleft

and θright are observed to be dependent on the pattern geometry, and thus we chose θ = θflat. We
hypothesize that differences between experiments and predictions in Fig. 5 are because the apparent
contact angle within the patterned regions is different than θ . We use β = 35◦ for the contact angle
with the unmodified wall, as evaluated in our previous work [20].

FIG. 9. (a) Microscope images of interface readjustment after pinch-off at the right side wall. (b) Time
evolution of θleft and θright after pinch-off. Scale bar is 200 μm.
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We also analyzed the contact angle after pinch-off. We find that interface at the right side wall
after pinch-off readjusts to minimize the surface energy (Fig. 9). Therefore θright increases with time
whereas θleft stays constant.
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